Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations (original) (raw)

Nature volume 349, pages 772–775 (1991)Cite this article

Abstract

IT has been suggested1–3 that fertilizing the ocean with iron might offset the continuing increase in atmospheric CO2 by enhancing the biological uptake of carbon, thereby decreasing the surface-ocean partial pressure of CO2and drawing down CO2 from the atmosphere. Using a box model, we present estimates of the maximum possible effect of iron fertilization, assuming that iron is continuously added to the phosphate-rich waters of the Southern Ocean, which corresponds to 16% of the world ocean surface. We find that after 100 years of fertilization, the atmospheric CO2 concentration would be 59 p.p.m. below what it would have been with no fertilization, assuming no anthropogenic CO2 emissions, and 90–107 p.p.m. less when anthropogenic emissions are included in the calculation. Such a large uptake of CO2 is unlikely to be achieved in practice, owing to a variety of constraints that require further study; the effect of iron fertilization on the ecology of the Southern Ocean also remains to be evaluated. Thus, the most effective and reliable strategy for reducing future increases in atmospheric CO2 continues to be control of anthropogenic emissions.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Booth, W. Washington Post. A1 (20 May 1990).
  2. Baum, R. Chem. Engng News 68, 21–24 (1990).
    Article Google Scholar
  3. Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Global biogeochem. Cycles 4, 5–12 (1990).
    Article ADS CAS Google Scholar
  4. Knox, F. & McElroy, M. B. J. geophys. Res. 84, 2503–2518 (1984).
    Google Scholar
  5. Siegenthaler, U. & Wenk, T. Nature 308, 624–626 (1984).
    Article ADS CAS Google Scholar
  6. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).
    Article ADS CAS Google Scholar
  7. Sarmiento, J. L., Toggweiler, J. R. & Najjar, R. Phil. Trans. R. Soc. A325, 3–21 (1988).
    Article ADS Google Scholar
  8. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).
    Article ADS CAS Google Scholar
  9. Martin, J. H. & Gordon, R. M. Deep-Sea Res. 35, 177–196 (1988).
    Article ADS CAS Google Scholar
  10. Martin J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).
    Article ADS CAS Google Scholar
  11. Martin, J. H. Paleoceanography 5, 1–13 (1990).
    Article ADS Google Scholar
  12. de Baar, H. J. W. et al. Mar. Ecol. Prog Ser. 65, 105–122 (1990).
    Article ADS CAS Google Scholar
  13. Banse, K. Limnol. Oceanogr. 35, 772–775 (1990).
    Article ADS CAS Google Scholar
  14. Dugdale, R. C., & Wilkerson, F. P. Global biogeochem. Cycles 4, 13–20 (1990).
    Article ADS CAS Google Scholar
  15. Anderson, G. C. & Morel, F. M. M. Limnol. Oceanogr. 27, 789–813 (1982).
    Article ADS CAS Google Scholar
  16. Morel, F. M., & Hudson, R. J. in Chemical Processes in Lakes (ed. Stumm, W.) 251,–270 (Wiley, New York, 1985).
    Google Scholar
  17. Peng, T.-H. & Broecker, W. S. Nature 349, 227–229 (1991).
    Article ADS CAS Google Scholar
  18. Toggweiler, J. R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural variations Archean to Present Vol. 32, Geophysical Monograph Series (eds. Sundquist, E. T. & Broecker, W. S.) 163–184 (American Geophysical Union, Washington, DC, 1985).
    Google Scholar
  19. Broecker, W. S. Peng, T.-H., Östlund, G. & Stuiver, M. J. geophys Res. 90, 6953–6970 (1985).
    Article ADS CAS Google Scholar
  20. Weiss, R. F., Bullister, J. L., Warner, M. J., Van Woy, F. A. & Salameh, P. K. Ajax Expedition Chlorofluorcarbon Measurements (Scripps Institution of Oceanography Reference 90–6, La Jolla, 1990).
    Google Scholar
  21. Broecker, W. S. Global biogeochem. Cycles 4, 1–2 (1990).
    Article ADS Google Scholar
  22. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change, The IPCC Scientific Assessment (Cambridg, University Press, 1990).
  23. Siegenthaler, U. & Oeschger, H. Tellus 39B, 140–154 (1987).
    Article ADS CAS Google Scholar
  24. Peng, T. H., Takashi T. & Broecker, W. S. Tellus 39B, 439–458 (1987).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Physics Institute, University of Bern, CH-3012, Bern, Switzerland
    F. Joos & U. Siegenthaler
  2. Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, 08544, USA
    J. L. Sarmiento

Authors

  1. F. Joos
    You can also search for this author inPubMed Google Scholar
  2. J. L. Sarmiento
    You can also search for this author inPubMed Google Scholar
  3. U. Siegenthaler
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Joos, F., Sarmiento, J. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations.Nature 349, 772–775 (1991). https://doi.org/10.1038/349772a0

Download citation

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.