A neuronal analogue of state-dependent learning (original) (raw)

References

  1. Izquierdo, I. in Neurobiology of Learning and Memory (eds Lynch, G., McGaugh, J. L. & Weinberger, N. M.) 333–358 (Guilford, New York, 1984).
    Google Scholar
  2. Gordon, W. C. & Klein, R. L. in Animal Learning and Cognition (ed. Mackintosh, N. J.) 255–279 (Academic, San Diego, 1994).
    Book Google Scholar
  3. Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10, 1185–1201 (1983).
    Article CAS Google Scholar
  4. Richardson, R. T. & DeLong, M. R. A reappraisal of the functions of the nucleus basalis of Meynert. Trends Neurosci. 11, 264–267 ( 1988).
    Article CAS Google Scholar
  5. Singer, W. in Brain Organization and Memory: Cells, Systems, and Circuits (eds McGaugh, J. L., Weinberger, N. M. & Lynch, G.) 211–233 (Oxford Univ. Press, New York, 1990).
    Google Scholar
  6. Ahissar, E. & Ahissar, M. Plasticity in auditory cortical circuitry. Curr. Opin. Neurobiol. 4, 580– 587 (1994).
    Article CAS Google Scholar
  7. Weinberger, N. M. Dynamic regulation of receptive fields and maps in the adult sensory cortex. Annu. Rev. Neurosci. 18, 129– 158 (1995).
    Article CAS Google Scholar
  8. Dykes, R. Mechanisms controlling neuronal plasticity in somatosensory cortex. Can. J. Physiol. Pharmacol. 75, 535–545 (1997).
    Article CAS Google Scholar
  9. Edeline, J. M. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog. Neurobiol. 57 , 165–224 (1999).
    Article CAS Google Scholar
  10. Metherate, R. & Weinberger, N. M. Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res. 480, 372–377 ( 1989).
    Article CAS Google Scholar
  11. Edeline, J. -M., Hars, B., Maho, C. & Hennevin, E. Transient and prolonged facilitation of tone-evoked responses induced by basal forebrain stimulations in the rat auditory cortex. Exp. Brain Res. 97, 373–386 (1994).
    Article CAS Google Scholar
  12. Kilgard, M. P. & Merzenich, M. M. Cortical map reorganization enabled by nucleus basalis activity. Science 279, 1714–1718 (1998).
    Article ADS CAS Google Scholar
  13. Kilgard, M. P. & Merzenich, M. M. Plasticity of temporal information processing in the primary auditory cortex. Nature Neurosci. 8, 727–731 (1998).
    Article Google Scholar
  14. Rasmusson, D. D. & Dykes, R. W. Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors. Exp. Brain Res. 70, 276–286 ( 1988).
    Article CAS Google Scholar
  15. Jacobs, S. E. & Juliano, S. L. The impact of basal forebrain lesions on the ability of rats to perform a sensory discrimination task involving barrel cortex. J. Neurosci. 15, 1099– 1109 (1995).
    Article CAS Google Scholar
  16. Baskerville, K. A., Schweitzer, J. B. & Herron, P. Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neurosci. 80, 1159–1169 (1997).
    Article CAS Google Scholar
  17. Maalouf, M., Miasnikov, A. A. & Dykes, R. W. Blockade of cholinergic receptors in rat barrel cortex prevents long-term changes in the evoked potential during sensory preconditioning. J. Neurophysiol. 80, 529– 545 (1998).
    Article CAS Google Scholar
  18. Sachdev, R. N., Lu, S. M., Wiley, R. G. & Ebner, F. F. Role of the basal forebrain cholinergic projection in somatosensory cortical plasticity. J. Neurophysiol. 79, 3216–3228 (1998).
    Article CAS Google Scholar
  19. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).
    Article CAS Google Scholar
  20. Carvel, G. E. & Simons, D. J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).
    Article Google Scholar
  21. Ahissar, E., Haidarliu, S. & Zacksenhouse, M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc. Natl Acad. Sci. USA 94, 11633–11638 ( 1997).
    Article ADS CAS Google Scholar
  22. Webster, H. H. et al. Long-term enhancement of evoked potentials in racoon somatosensory cortex following co-activation of the nucleus basalis of Meynert complex and cutaneous receptors. Brain Res. 545, 292 –296 (1991).
    Article CAS Google Scholar
  23. Howard, M. A. & Simons, D. J. Physiologic effects of nucleus basalis magnocellularis stimulation on rat barrel cortex neurons. Exp. Brain Res. 102, 21–33 (1994).
    Article Google Scholar
  24. Ahissar, E., Haidarliu, S. & Shulz, D. E. Possible involvement of neuromodulatory systems in cortical Hebbian-like plasticity. J. Physiol. (Paris) 90, 353–360 (1996).
    Article CAS Google Scholar
  25. Delacour, J., Houcine, O. & Costa, J. C. Evidence for a cholinergic mechanism of “learned” changes in the responses of barrel field neurons of the awake and undrugged rat. Neuroscience 34, 1– 8 (1990).
    Article CAS Google Scholar
  26. Shulz, D. E., Cohen, S., Haidarliu, S. & Ahissar, E. Differential effects of acetylcholine on neuronal activity and interactions in the auditory cortex of the guinea-pig. Eur. J. Neurosci. 9, 396–409 (1997).
    Article CAS Google Scholar
  27. Haidarliu, S. & Ahissar, E. Spatial organization of facial vibrissae and cortical barrels in the guinea pig and golden hamster. J. Comp. Neurol. 385, 515–527 ( 1997).
    Article CAS Google Scholar
  28. Haidarliu, S. An anatomically adapted, injury-free headholder for guinea pigs. Physiol. Behav. 60, 111–114 (1996).
    Article CAS Google Scholar
  29. Haidarliu, S., Shulz, D. E. & Ahissar, E. A multi-electrode array for combined microiontophoresis and multiple single-unit recordings. J. Neurosci. Meth. 56, 125–131 (1995).
    Article CAS Google Scholar

Download references