The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant (original) (raw)
References
Wolf, B. B. & Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem.274, 20049–20052 (1999). ArticleCAS Google Scholar
Slee, E. A. et al. Ordering the cytochrome _c_-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol.144, 281– 292 (1999). ArticleCAS Google Scholar
Nicholson, D. W. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci.22, 299–306 (1997). ArticleCAS Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997). ArticleCAS Google Scholar
Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1/cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9 . J. Biol. Chem.274, 11549– 11556 (1999). ArticleCAS Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3 . Cell90, 405–413 (1997). ArticleCAS Google Scholar
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf 1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). ArticleCAS Google Scholar
Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J.18, 3586–3595 (1999). ArticleCAS Google Scholar
Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell1, 949–957 ( 1998). ArticleCAS Google Scholar
Kennedy, S. G., Kandel, E. S., Cross, T. K. & Hay, N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol. Cell. Biol.19, 5800–5810 (1999). ArticleCAS Google Scholar
Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria . Proc. Natl Acad. Sci. USA95, 14681– 14686 (1998). ArticleCAS Google Scholar
Wolter, K. G. et al. Movement of Bax from the cytosol to mitochondria during apoptosis . J. Cell Biol.139, 1281– 1292 (1997). ArticleCAS Google Scholar
Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G. & Green, D. R. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem.274, 2225– 2233 (1999). ArticleCAS Google Scholar
Eskes, R. et al. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol.143, 217– 224 (1998). ArticleCAS Google Scholar
Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell94, 481– 490 (1998). ArticleCAS Google Scholar
Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol.144, 891–901 (1999). ArticleCAS Google Scholar
Basanez, G. et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl Acad. Sci. USA96, 5492–5497 ( 1999). ArticleCAS Google Scholar
Marchetti, P. et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J. Exp. Med.184, 1155 –1160 (1996). ArticleCAS Google Scholar
Heiskanen, K. M., Bhat, M. B., Wang, H. W., Ma, J. & Nieminen, A. L. Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC 6 cells. J. Biol. Chem.274, 5654–5658 (1999). ArticleCAS Google Scholar
Heiden, M. G., Chandel, N. S., Schumacker, P. T. & Thompson, C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell3, 159–167 (1999). Article Google Scholar
Susin, S. A. et al. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med.189, 381– 394 (1999). ArticleCAS Google Scholar
Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397, 441– 446 (1999). ArticleCAS Google Scholar
Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science281, 1309–1312 ( 1998). ArticleCAS Google Scholar
Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J. Exp. Med.187, 1261–1271 ( 1998). ArticleCAS Google Scholar
Bossy-Wetzel, E., Newmeyer, D. D. & Green, D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J.17, 37–49 (1998). ArticleCAS Google Scholar
Single, B., Leist, M. & Nicotera, P. Simultaneous release of adenylate kinase and cytochrome c in cell death. Cell Death Differ.5, 1001–1003 (1998). ArticleCAS Google Scholar
Kohler, C. et al. Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Lett.447, 10–12 (1999). ArticleCAS Google Scholar
Kluck, R. M. et al. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol.147, 809–822 (1999). ArticleCAS Google Scholar
Martin, S. J. et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med.182 , 1545–1556 (1995). ArticleCAS Google Scholar
Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger, C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods184, 39–51 (1995). ArticleCAS Google Scholar
Srinivasan, A. et al. Bcl-xL functions downstream of caspase-8 to inhibit Fas- and tumor necrosis factor receptor 1-induced apoptosis of MCF7 breast carcinoma cells. J. Biol. Chem.273, 4523– 4529 (1998). ArticleCAS Google Scholar
Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell1, 327–336 ( 1998). ArticleCAS Google Scholar
Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. & Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem.274, 17941–17945 (1999). ArticleCAS Google Scholar
Eguchi, Y., Shimizu, S. & Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res.57, 1835 –1840 (1997). CASPubMed Google Scholar
Leist, M., Single, B., Castoldi, A. F., Kuhnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis . J. Exp. Med.185, 1481– 1486 (1997). ArticleCAS Google Scholar
Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol.60, 619 –642 (1998). ArticleCAS Google Scholar