ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway (original) (raw)

References

  1. Carney,J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).
    Article CAS Google Scholar
  2. Varon,R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).
    Article CAS Google Scholar
  3. Featherstone,C. & Jackson,S. P. DNA repair: the Nijmegen breakage syndrome protein. Curr. Biol. 8, R622–R625 (1998).
    Article CAS Google Scholar
  4. Shiloh,Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635 –662 (1997).
    Article CAS Google Scholar
  5. Canman,C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677– 1679 (1998).
    Article ADS CAS Google Scholar
  6. Banin,S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).
    Article ADS CAS Google Scholar
  7. Petrini,J. H. The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular DNA-damage response. Am. J. Hum. Genet. 64, 1264–1269 (1999).
    Article CAS Google Scholar
  8. Kastan,M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).
    Article CAS Google Scholar
  9. Canman,C. E., Wolff,A. C., Chen,C. Y., Fornace,A. J. Jr & Kastan,M. B. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res. 54, 5054–5058 (1994).
    CAS PubMed Google Scholar
  10. Khanna,K. K. et al. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene 11, 609–618 (1995).
    CAS PubMed Google Scholar
  11. Siliciano,J. D. et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11, 3471– 3481 (1997).
    Article CAS Google Scholar
  12. Jongmans,W. et al. Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol. Cell. Biol. 17, 5016–5022 (1997).
    Article CAS Google Scholar
  13. Yamazaki,V., Wegner,R. D. & Kirchgessner, C. U. Characterization of cell cycle checkpoint responses after ionizing radiation in Nijmegen breakage syndrome cells. Cancer Res. 58, 2316–2322 (1998).
    CAS PubMed Google Scholar
  14. Hartley,K. O. et al. DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856 (1995).
    Article CAS Google Scholar
  15. Cimprich,K. A., Shin,T. B., Keith,C. T. & Schreiber,S. L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl Acad. Sci. USA 93, 2850– 2855 (1996).
    Article ADS CAS Google Scholar
  16. Kim,S. T., Lim,D. S., Canman,C. E. & Kastan,M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 274, 37538–37543 (1999).
    Article CAS Google Scholar
  17. Nelms,B. E., Maser,R. S., MacKay,J. F., Lagally,M. G. & Petrini,J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 (1998).
    Article ADS CAS Google Scholar
  18. Trujillo,K. M., Yuan,S. S., Lee,E. Y. & Sung,P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447– 21450 (1998).
    Article CAS Google Scholar
  19. Paull,T. T. & Gellert,M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 ( 1999).
    Article CAS Google Scholar
  20. Maser,R. S., Monsen,K. J., Nelms,B. E. & Petrini,J. H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).
    Article CAS Google Scholar
  21. Maser,R. S., Mressan,D. A. & Petrini, J. H. The Mre11-Rad50 Complex: Diverse Functions in the Cellular DNA Damage Response (Humana, Totowa, 1999).
    Google Scholar
  22. Khosravi,R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl Acad. Sci. USA 96, 14973–14977 (1999).
    Article ADS CAS Google Scholar
  23. Matsuoka,S., Huang,M. & Elledge,S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893– 1897 (1998).
    Article ADS CAS Google Scholar
  24. Brown,A. L. et al. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl Acad. Sci. USA 96, 3745–3750 (1999).
    Article ADS CAS Google Scholar
  25. Cortez,D., Wang,Y., Qin,J. & Elledge,S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).
    Article CAS Google Scholar
  26. Zhong,Q. et al. Association of BRCA1 with the hRad50-hMre11-p95/nbs1 complex and the DNA damage response. Science 285, 747–750 (1999).
    Article CAS Google Scholar
  27. Ziv,Y. et al. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene 15, 159–167 (1997).
    Article CAS Google Scholar
  28. Morgan,S. E., Lovly,C., Pandita,T. K., Shiloh,Y. & Kastan,M. B. Fragments of ATM which have dominant-negative or complementing activity. Mol. Cell. Biol. 17, 2020– 2029 (1997).
    Article CAS Google Scholar

Download references