Medicinal strategies in the treatment of obesity (original) (raw)
World Health Organization. Obesity: Preventing and Managing the Global Epidemic. (World Health Organization, Geneva, 1998).
National Heart Lung and Blood Institute. Clinical guidelines on the identification evaluation and treatment of overweight and obesity in adults — the evidence report. Obes. Res.6 (Suppl. 2), 51S–290S ( 1998).
Allison D. B. et al. Annual deaths attributable to obesity in the United States . J. Am. Med. Assoc.282, 1530– 1538 (1999). ArticleCAS Google Scholar
Bray, G. A. Drug treatment of obesity. Don't throw out the baby with the bath water. Am. J. Clin. Nutr.67, 1–2 (1998). ArticleCASPubMed Google Scholar
Bray, G. A. Current and Contemporary Management of Obesity (Handbooks in Health Care, Newtown, PA, 1998). Google Scholar
Bray, G. A. & Greenway, F. L. A review of current and potential drugs for treatment of obesity. Endocr. Rev.20, 805–875 (1999). ArticleCASPubMed Google Scholar
Jequier, E. & Tappy, L. Regulation of body weight in humans . Physiol. Rev.79, 451– 480 (1999). ArticleCASPubMed Google Scholar
Rolls, B. J., Shide, D. J., Thorwart, M. L. & Ulbrecht, J. S. Sibutramine reduces food intake in non-dieting women with obesity. Obes. Res.6, 1–11 ( 1998). ArticleCASPubMed Google Scholar
Hansen, D. L. et al. Thermogenic effects of sibutramine in humans. Am. J. Clin. Nutr.68, 1180–1186 (1998). ArticleCASPubMed Google Scholar
Seagle, H. M., Gessesen, D. H. & Hill, J. O. Effects of sibutramine on resting metabolic rate and weight loss in overweight women. Obes. Res.6, 115–121 (1998). ArticleCASPubMed Google Scholar
Bray, G. A. et al. Sibutramine produces dose-related weight loss. Obes. Res.7, 189–198 ( 1999). ArticleCASPubMed Google Scholar
Apfelbaum, M. et al. Long-term maintenance of weight loss after a very low calorie diet: efficacy and tolerability of sibutramine. Am. J. Med. 106, 179–184 (1999). ArticleCASPubMed Google Scholar
Guercolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord . 21, S12–S23 ( 1997). Google Scholar
Hauptman, J. B., Jeunet, F. S. & Hartmann, D. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am. J. Clin. Nutr.55, 309S–313S ( 1992). ArticleCASPubMed Google Scholar
Sjostrom, L. et al. Randomized placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet352, 167– 172 (1998). ArticleCASPubMed Google Scholar
Davidson, M. H., Hauptman, J. & DiGirolamo, M. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat. A randomized controlled trial. J. Am. Med. Assoc.281, 235–242 (1999). ArticleCAS Google Scholar
Hollander, P. et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. Diabetes Care21, 1288– 1294 (1998). ArticleCASPubMed Google Scholar
Hill, J. O. et al. Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting — A 1 year study. Am. J. Clin. Nutr.9, 1108–1116 ( 1999). Article Google Scholar
Conavatchel, W. Long-term tolerability profile of orlistat, an intestinal lipase inhibitor . Diabetologia40, A196 ( 1997). Google Scholar
Astrup, A., Lundsgaard, C., Madsen, J., & Christensen, N. J. Enhanced thermogenic responsiveness during chronic ephedrine treatment in man. Am. J. Clin. Nutr.42, 83– 94 (1985). ArticleCASPubMed Google Scholar
Astrup, A., Breum, L., Toubro, S., Hein, P. & Quaade, F. The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy-restricted diet. A double-blind trial. Int. J. Obes. Relat. Metab. Disord.16, 269–277 ( 1992). CASPubMed Google Scholar
Toubro, S., Astrup, L., Breum, L. & Quaade, F. The acute and chronic effects of ephedrine/caffeine mixtures on energy expenditure and glucose metabolism in humans. Int. J. Obes. Relat. Metab. Disord.17, S73–S77 (1993). PubMed Google Scholar
Astrup, A. et al. The effect of ephedrine/caffeine mixture on energy expenditure and body composition in obese women. Metabolism41, 686–688 (1992). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue . Nature372, 425–432 (1994). ArticleADSCASPubMed Google Scholar
Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor OB-R. Cell83, 1263–1271 (1995). ArticleCASPubMed Google Scholar
Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell84, 491–495 ( 1996). ArticleCASPubMed Google Scholar
Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice . Nature379, 632–635 (1996). ArticleADSCASPubMed Google Scholar
Chua, S. C. Jr et al. Phenotypes of mouse diabetes and rat fat due to mutations in the OB (leptin) receptor. Science271, 994–996 (1996). ArticleADSCASPubMed Google Scholar
Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell88, 131– 141 (1997). ArticleCASPubMed Google Scholar
Smith, G. P. Satiation: From Gut to Brain 291 (Oxford Univ. Press, New York, 1998). Book Google Scholar
Gutzwiller J. P. et al. Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology106, 1168–1173 (1994). ArticleCASPubMed Google Scholar
Flint, A., Raben, A. l., Astrup, A. & Holst, J. J. Glucagon-like peptide I promotes satiety and suppresses energy intake in humans. J. Clin. Invest.101, 515–520 (1998). ArticleCASPubMedPubMed Central Google Scholar
Holst, J. J. Glucagon-like peptide-1 (GLP-1) — an intestinal hormone, signaling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol. Metab.10, 229–235 ( 1999). ArticleCASPubMed Google Scholar
Gutzwiller, J. P. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol.276 (5 Pt 2), R1541–R1544 (1999). CASPubMed Google Scholar
Erlanson-Albertsson, C. & York, D. Enterostatin – a peptide regulating fat intake. Obes. Res.5, 360–372 (1997). ArticleCASPubMed Google Scholar
Smeets, M., Geiselman, P., Bray, G. A. & York, D. A. The effect of oral enterostatin on hunger and food intake in human volunteers . FASEB J.13, A871 ( 1999). Google Scholar
Wetherford, S. C. et al. Intraventricular administration of enterostatin decreases food intake in baboons. Appetite19, 225 (1992). Article Google Scholar
Morley, J. E., Flood, J. F., Horowitz, M., Morley, P. M. & Walter, M. J. Modulation of food intake by peripherally administered amylin. Am. J. Physiol.276 (1 Pt 2), R178–R184 (1994 ). Google Scholar
Nagase, H., Bray, G. A. & York, D. A. Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity. Physiol. Behav.59, 555–560 ( 1996). ArticleCASPubMed Google Scholar
Scharrer, E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition15, 704–714 ( 1999). ArticleCASPubMed Google Scholar
Sullivan, A. C., Triscari, J., Hamilton, J. G. & Miller, O. N. Effect of (–)-hydroxycitrate upon the accumulation of lipid in the rat. II. Appetite. Lipids9, 129– 134 (1974). ArticleCASPubMed Google Scholar
Heymsfield, S. B. et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. J. Am. Med. Assoc.280, 1596–1600 (1998). ArticleCAS Google Scholar
Gietzen, D. W., Erecius, L. F. & Rogers, Q. R. Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J. Nutr.128, 771– 781 (1998). ArticleCASPubMed Google Scholar
Tso, P., Liu, M., & Kalogeris, T. J. The role of apolipoprotein A-IV in food intake regulation . J. Nutr.8,1503–1506 (1999). Article Google Scholar
Mantzoros, C. S. The role of leptin in human obesity and disease — a review of current evidence. Ann. Intern. Med.130, 671– 680 (1999). ArticleCASPubMed Google Scholar
Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab.10, 211–216 (1999). ArticleCASPubMed Google Scholar
Wilson, B. D., Ollmann, M. M. & Barsh, G. S. The role of agouti-related protein in regulating body-weight. Mol. Med. Today5, 250– 256 (1999). ArticleCASPubMed Google Scholar
Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature393, 72– 76 (1998). ArticleADSCASPubMed Google Scholar
Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation study. J. Am. Med. Assoc.282, 1568–1575.
Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341, 879–884 (1999). ArticleCASPubMed Google Scholar
Ogawa, Y. et al. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes48, 1822–1829 (1999). ArticleCASPubMed Google Scholar
Bjorbaek, C. et al. Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology140, 2035–2043 (1999). ArticleCASPubMed Google Scholar
Zimanyi, I. A., Fathi, Z. & Poindexter, G. S. Central control of feeding behavior by neuropeptide Y. Curr. Pharm. Des.4, 349– 366 (1998). CASPubMed Google Scholar
Palmiter, R. D. et al. in Pennington Center Nutrition Series: Nutrition, Genetics, and Obesity 269–286 (Louisiana State Univ. Press, Baton Rouge, 1999). Google Scholar
Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med. 5, 1066–1070 (1999). ArticleCASPubMed Google Scholar
Chambers, J. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature400 , 261–269 (1999). ArticleADSCASPubMed Google Scholar
Saito, Y. et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature400, 265– 269 (1999). ArticleADSCASPubMed Google Scholar
Shimada, M. et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature396, 670– 673 (1998). ArticleADSCASPubMed Google Scholar
Lembo, P. M. et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nature Cell Biol.5, 267–271 (1999). ArticleCAS Google Scholar
Barton, C., York, D. A. & Bray, G. A. Opioid receptor subtype control of galinin-induced feeding . Peptides17, 237–240 (1996). ArticleCASPubMed Google Scholar
Rokaeus, A., Jiang, K., Spyrou, G. & Waschek, J. A. Transcriptional control of the galanin gene. Tissue-specific expression and induction by NGF, protein kinase C, and estrogen. Ann. NY Acad. Sci.863, 1–13 (1998). ArticleADSCASPubMed Google Scholar
Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell92, 573–585 ( 1998). ArticleCASPubMed Google Scholar
Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (Orexin) Receptor 2 gene. Cell98, 365–376 (1999). ArticleCASPubMed Google Scholar
Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell98, 437– 451 (1999). ArticleCASPubMed Google Scholar
Kalra, S. P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev.1, 68–100 (1999). Article Google Scholar
Karolyi, I. J. et al. Altered anxiety and weight gain in corticotropin-releasing-hormone-binding protein-deficient mice. Proc. Natl Acad. Sci. USA96 , 11595–11600 (1999). ArticleADSCASPubMedPubMed Central Google Scholar
Vickers, S. P., Clifton, P. G., Dourish, C. T. & Tecott, L. H. Reduced satiating effect of d-fenfluramine in serotonin 5-HT (2C) receptor mutant mice. Psychopharmacology143, 309 –314 (1999). ArticleCASPubMed Google Scholar
Smith, B. K., York, D. A. & Bray, G. A. Activation of hypothalamic serotonin receptors reduced intake of dietary fat and protein but not carbohydrate. Am. J. Physiol.277, R802–R811 (1999). CASPubMed Google Scholar
Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine . N. Engl. J. Med.337, 581– 588 (1997). ArticleCASPubMed Google Scholar
Ryan, D. H. et al. Serial echocardiographic and clinical evaluation of valvular regurgitation before, during, and after treatment with fenfluramine or dexfenfluramine and mazindol or phentermine. Obes. Res.7, 313–322 (1999). ArticleCASPubMed Google Scholar
Rothman, R. B., Ayestas, M. A., Dersch, C. M., & Baumann, M. H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation100, 869–875 (1999). ArticleCASPubMed Google Scholar
Heinonen, P. et al. Identification of a three-amino acid deletion in the alpha2B-adrenergic receptor that is associated with reduced basal metabolic rate in obese subjects . J. Clin. Endocrinol. Metab.84, 2429– 2433 (1999). CASPubMed Google Scholar
Terry, P., Gilbert, D. B. & Cooper, S. J. Dopamine receptor subtype agonists and feeding behavior . Obes. Res.3, 515S ( 1995). ArticleCASPubMed Google Scholar
Sakata, S., Yoshimatsu, H. & Kurokawa, M. Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition13, 403–411 (1997). ArticleCASPubMed Google Scholar
Lovenberg, T. W. et al. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol.55, 1101– 1107 (1999). ArticleCASPubMed Google Scholar
Kurose, Y. & Terashima, Y. Histamine regulates food intake through modulating noradrenaline release in the para-ventricular nucleus. Brain Res. 15, 115–118 ( 1999). Article Google Scholar
Stahl, A. et al. Identification of the major intestinal fatty acid transport protein . Mol. Cell4, 299–308 (1999). ArticleCASPubMed Google Scholar
Bray, G. A. The Obese Patient (Saunders, Philadelphia, 1976). Google Scholar
Danforth, E. Jr & Himms-Hagen, J. H. Obesity and diabetes and the beta-3 adrenergic receptor. Eur. J. Endocrinol.136, 362–365 ( 1997). ArticleCASPubMed Google Scholar
Klingenberg, M. & Huang, S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta8, 271–296 (1999). Article Google Scholar
Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia . Nature Genet.15, 269– 272 (1997). ArticleCASPubMed Google Scholar
Gimeno, R. E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes46, 900–906 ( 1997). ArticleCASPubMed Google Scholar
Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J. S. & Lowell, B. B. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun.235, 79–82 (1997). ArticleCASPubMed Google Scholar
Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett.408, 39–42 (1997). ArticleADSCASPubMed Google Scholar
Gong, D. W., He, Y., Karas, M. & Reitman, M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J. Biol. Chem.39, 24129–24132 (1997). Article Google Scholar
Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science283, 1544–1548 (1999). ArticleADSCASPubMed Google Scholar
Cases, S. et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacyglycerol synthesis. Proc. Natl Acad. Sci. USA95, 13018–13023 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Marin, P. et al. The effects of testosterone on body composition and metabolism in middle-aged obese men. Int. J. Obes. Relat. Metab. Disord.16, 991–997 (1992). CASPubMed Google Scholar
Lovejoy, J. C. et al. Oral anabolic steroid treatment, but not parenteral androgen treatment, decreases abdominal fat in obese, older men. Int. J. Obes. Relat. Metab. Disord.19, 614– 624 (1995). CASPubMed Google Scholar
Kin, K. R. et al. Low-dose growth hormone treatment with diet restriction accelerates body fat loss, exerts anabolic effect and improves growth hormone secretory dysfunction in obese adults. Hormone Res.51, 78–84 (1999). ArticleADS Google Scholar
Bujalska, I. J., Kumar, S., Hewison, M. & Stewart, P. M. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11 beta-hydroxysteroid dehydrogenase. Endocrinology140, 3188– 3196 (1999). ArticleCASPubMed Google Scholar
Greenway, F. L. & Bray, G. A. Topical fat reduction . Obes. Res.3 (Suppl. 4), 561S –568S (1995). ArticleCASPubMed Google Scholar