Retrotransposition of a bacterial group II intron (original) (raw)

References

  1. Jacquier,A. Self-splicing group II and nuclear pre-mRNA introns: how similar are they? Trends Biochem. Sci. 15, 351– 354 (1990).
    Article CAS Google Scholar
  2. Sharp,P. A. Five easy pieces. Science 254, 663 (1991).
    Article ADS CAS Google Scholar
  3. Cavalier-Smith,T. Intron phylogeny: a new hypothesis. Trends Genet. 7 , 145–148 (1991).
    Article CAS Google Scholar
  4. Roger,A. J. & Doolittle,W. F. Why introns-in-pieces? Nature 364, 289–290 ( 1993).
    Article ADS CAS Google Scholar
  5. Weiner,A. M. mRNA splicing and autocatalytic introns: distant cousins or the products of chemical determinism? Cell 72, 161– 164 (1993).
    Article CAS Google Scholar
  6. Michel,F. & Ferat,J. Structure and activities of group II introns. Annu. Rev. Biochem. 64, 435– 461 (1995).
    Article CAS Google Scholar
  7. Hetzer,M., Wurzer,G., Schweyen,R. J. & Mueller,M. W. Trans-activation of group II intron splicing by nuclear U5 snRNA. Nature 386, 417–420 ( 1997).
    Article ADS CAS Google Scholar
  8. Mills,D. A., Manias,D. A., McKay,L. L. & Dunny,G. M. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179, 6107– 6111 (1997).
    Article CAS Google Scholar
  9. Lambowitz,A. M., Caprara,M. G., Zimmerly,S. & Perlman,P. S. in The RNA World 451–485 (Cold Spring Harbor Laboratory Press, New York, 1999).
    Google Scholar
  10. Matsuura,M. et al. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11, 2910–2924 (1997).
    Article CAS Google Scholar
  11. Cousineau,B. et al. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94, 451–462 ( 1998).
    Article CAS Google Scholar
  12. Kuipers,O. P., Beerthuyzen,M. M., de Ruyter, P. G., Luesink,E. J. & de Vos,W. M. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 10, 27299–27304 ( 1995).
    Article Google Scholar
  13. Biswas,I., Gruss,A., Ehrlich,S. D. & Maguin,E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J. Bacteriol. 175, 3628–3625 (1993).
    Article CAS Google Scholar
  14. Mueller,M. W., Allmaier,M., Eskes,R. & Schweyen,R. J. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366, 174– 176 (1993).
    Article ADS CAS Google Scholar
  15. Sellem,C. H., Lecellier,G. & Belcour, L. Transposition of a group II intron. Nature 366, 176–178 ( 1993).
    Article ADS CAS Google Scholar
  16. Mohr,G., Smith,D., Belfort,M. & Lambowitz,A. M. Rules for DNA target site recognition by a Lactococcal intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14 , 559–573 (2000).
    CAS PubMed PubMed Central Google Scholar
  17. Roman,J. & Woodson,S. A. Reverse splicing of the Tetrahymena IVS: Evidence for multiple reaction sites in the 23S tRNA. RNA 1, 478–490 ( 1995).
    CAS PubMed PubMed Central Google Scholar
  18. Woodson,S. A. & Cech,T. R. Reverse self-splicing of the Tetrahymena group I intron: Implication for the directionality of splicing and for intron transposition. Cell 57, 335– 345 (1989).
    Article CAS Google Scholar
  19. Augustin,S., Muller,M. W. & Schweyen, R. J. Reverse self-splicing of group II intron RNAs in vitro. Nature 343, 383– 386 (1990).
    Article ADS CAS Google Scholar
  20. Morl,M. & Schmelzer,C. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Cell 60, 629– 636 (1990).
    Article CAS Google Scholar
  21. Mohr,G. & Lambowitz,A. M. Integration of a group I intron into a ribosomal RNA sequence promoted by a tyrosyl-tRNA synthetase. Nature 354, 164–167 ( 1991).
    Article ADS CAS Google Scholar
  22. Thompson,A. J. & Herrin,D. L. A chloroplast group I intron undergoes the first step of reverse splicing into host cytoplasmic 5.8 S rRNA. J. Mol. Biol. 236, 455– 468 (1994).
    Article CAS Google Scholar
  23. Roman,J., Rubin,M. N. & Woodson, S. A. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. RNA 5, 1–13 (1999).
    Article CAS Google Scholar
  24. Eickbush,T. H. Mobile introns: retrohoming by complete reverse splicing. Curr. Biol. 9, R11–R14 ( 1999).
    Article CAS Google Scholar
  25. Curcio,M. J. & Belfort,M. Retrohoming: cDNA-mediated mobility of group II introns requires a catalytic RNA. Cell 84, 9–12 (1996).
    Article CAS Google Scholar
  26. Ferat,J. & Michel,F. Group II self-splicing introns in bacteria. Nature 364, 358– 361 (1993).
    Article ADS CAS Google Scholar
  27. Xiong,Y. & Eickbush,T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).
    Article CAS Google Scholar
  28. Zimmerly,S., Guo,H., Perlman,P. S. & Lambowitz,A. M. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82, 545–554 ( 1995).
    Article CAS Google Scholar
  29. Smit,A. F. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6, 743–748 ( 1996).
    Article CAS Google Scholar

Download references