Structure of the reovirus core at 3.6?Å resolution (original) (raw)

References

  1. Fields,B. N. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 1553–1555 (Lippincott-Raven, Philadelphia, 1996).
    Google Scholar
  2. Nibert,M. L., Schiff,L. A. & Fields, B. N. in Fields Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 1557–1596 (Lippincott-Raven, Philadelphia, 1996).
    Google Scholar
  3. Grimes,J. M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 ( 1998).
    Article ADS CAS Google Scholar
  4. Furuichi,Y., Muthukrishnan,S., Tomasz, J. & Shatkin,A. Mechanism and formation of reovirus mRNA 5′-terminal blocked and methylated sequence m7GpppGmpC. J. Biol. Chem. 251, 5043–5053 ( 1976).
    CAS PubMed Google Scholar
  5. Earnshaw,W. C. & Harrison,S. C. DNA arrangement in isometric phage heads. Nature 268, 598– 602 (1977).
    Article ADS CAS Google Scholar
  6. Dryden,K. A. et al. Internal structures containing transcriptase-related proteins in top component particles of mammalian orthoreovirus. Virology 245, 33–46 ( 1998).
    Article CAS Google Scholar
  7. Gouet,P. et al. The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. Cell 97, 481 –490 (1999).
    Article CAS Google Scholar
  8. Hill,C. L. et al. The structure of cypovirus and the functional organization of dsRNA viruses. Nature Struct. Biol. 6, 565 –568 (1999).
    Article CAS Google Scholar
  9. Dryden,K. A. et al. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J. Cell Biol. 122, 1023– 1041 (1993).
    Article CAS Google Scholar
  10. Kohlstaedt,L. A., Wang,J., Friedman,J. M., Rice,P. A. & Steitz,T. A. Crystal structure of 3.5?Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 ( 1992).
    Article ADS CAS Google Scholar
  11. Stehle,T., Yan,Y., Benjamin,T. L. & Harrison,S. C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369, 160–163 ( 1994).
    Article ADS CAS Google Scholar
  12. Liddington,R. C. et al. Structure of simian virus 40 at 3.8?Å resolution. Nature 354, 278–284 (1991).
    Article ADS CAS Google Scholar
  13. Labbe,M., Charpilienne,A., Crawford, S. E., Estes,M. K. & Cohen,J. Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65, 2946–2952 (1991).
    CAS PubMed PubMed Central Google Scholar
  14. Moss,S. R. & Nuttall,P. A. Subcore- and core-like particles of Broadhaven virus (BRDV), a tick-bourne orbivirus, synthesized from baculovirus expressed VP2 and VP7, the major core proteins of BRVD. Virus Res. 32, 401–407 ( 1994).
    Article CAS Google Scholar
  15. Xu,P., Miller,S. & Joklik,W. K. Generation of reovirus core-like particles in cells infected with hybrid vaccinia viruses that express genome segments L1, L2, L3, and S2. Virology 197, 726– 731 (1993).
    Article CAS Google Scholar
  16. Mao,Z. & Joklik,W. K. Isolation and enzymatic characterization of protein λ2, the reovirus guanylyltransferase. Virology 185, 377–386 ( 1991).
    Article CAS Google Scholar
  17. Luongo,C. L., Reinisch,K. M., Harrison, S. C. & Nibert,M. L. Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein l2. J. Biol. Chem. 275, 2804–2810 (2000).
    Article CAS Google Scholar
  18. Håkansson,K., Doherty,A. J., Shuman,S. & Wigley,D. B. X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes. Cell 89, 545–553 (1997).
    Article Google Scholar
  19. Schluckebier,G., O'Gara,M., Saenger,W. & Cheng,X. Universal catalytic domain structure of AdoMet-dependent methyltransferases. J. Mol. Biol. 247, 16–20 ( 1995).
    Article CAS Google Scholar
  20. Hodel,A. E., Gershon,P. D., Shi,X. & Quiocho,F. A. The 1.85?Å structure of the vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247–256 (1996).
    Article CAS Google Scholar
  21. Hu,G., Gershon,P. D., Hodel,A. E. & Quiocho,F. A. mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains. Proc. Natl Acad. Sci. USA 96, 7149–7154 ( 1999).
    Article ADS CAS Google Scholar
  22. Wickner,S., Maurizi,M. R. & Gottesman, S. Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286, 1888 –1893 (1999).
    Article CAS Google Scholar
  23. Earnshaw,W. C., King,J., Harrison,S. C. & Eiserling,F. A. The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14, 559– 568 (1978).
    Article CAS Google Scholar
  24. Harvey,J. D., Bellamy,A. R., Earnshaw,W. C. & Schutt,C. Biophysical studies of reovirus type 3: iv low-angle x-ray diffraction studies. Virology 112, 240–249 (1981).
    Article CAS Google Scholar
  25. Harrison,S. C. Packaging of DNA into bacteriophage heads: a model. J. Mol. Biol. 171, 577–580 ( 1983).
    Article CAS Google Scholar
  26. Cerritelli,M. E. et al. Encapsidated conformations of bacteriophage T7 DNA. Cell 91, 271–280 ( 1997).
    Article CAS Google Scholar
  27. Booy,F. P. et al. Liquid crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell 64, 1007– 1015 (1991).
    Article CAS Google Scholar
  28. Butcher,S. J., Dokland,T., Ojala,P. M., Bamford,D. H. & Fuller, S. D. Intermediates in the assembly pathway of the double-stranded RNA virus φ6. EMBO J. 16, 4477– 4487 (1997).
    Article CAS Google Scholar
  29. Cheng,R. H. et al. Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. J. Mol. Biol. 244, 255– 258 (1994).
    Article CAS Google Scholar
  30. Shaw,A. L., Samal,S. K., Subramanian, K. & Prasad,B. V. V. The structure of aquareovirus shows how the different geometries of the two layers of capsid are reconciled to provide symmetrical interactions and stabilization. Structure 4, 957– 967 (1996).
    Article CAS Google Scholar
  31. Zhang,H. et al. Visualization of protein–RNA interactions in cytoplasmic polyhedrosis virus. J. Virol. 73, 1624– 1629 (1999).
    CAS PubMed PubMed Central Google Scholar
  32. Prasad,B. V., Wang,G. J., Clerx,J. P. & Chiu,W. Three-dimensional structure of rotavirus. J. Mol. Biol. 199, 269–275 (1988).
    Article CAS Google Scholar
  33. Coombs,K. M., Fields,B. N. & Harrison, S. C. Crystallization of the reovirus type 3 Dearing core. J. Mol. Biol. 215, 1–5 (1990).
    Article CAS Google Scholar
  34. Otwinowski,Z. & Minor,W. in Macromolecular Crystallography A (eds Carter, C. W. & Sweet, R. M.) 307–326 (Academic, New York, 1997).
    Book Google Scholar
  35. CCP4. The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994).
    Article Google Scholar
  36. Jones,T. A. in Molecular Replacement (eds Dodson, E. J., Gover, S. & Wolf, W.) 91–105 (SERC Daresbury Laboratory, Warrington, 1992).
    Google Scholar
  37. Kleywegt,G. J. & Jones,T. A. in From First Map to Final Model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (SERC Daresbury Laboratory, Warrington, 1994).
    Google Scholar
  38. Jones,T. A., Zou,J. Y., Cowan,S. W. & Kjelgaard,M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  39. Brunger,A. T. et al. Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS Google Scholar
  40. Jacobsen,D. H., Hogle,J. M. & Filman, D. J. A pseudo-cell based approach to efficient crystallographic refinement of viruses. Acta Crystallogr. D 52, 693–711 (1996).
    Article Google Scholar
  41. Laskowski,R. A., MacArthur,M. W., Moss,D. S. & Thornton,J. M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 291 (1993).
    Article CAS Google Scholar
  42. Carson,M. in Macromolecular Enzymology (eds Carter, C. W. Jr & Sweet, R. M.) 493–505 (Academic, New York, 1996).
    Google Scholar
  43. Esnouf,R. M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 133–138 (1997).
    Google Scholar
  44. Merrit,E. A. & Murphy,M. E. P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crsytallogr. D 50, 869–873 (1994).
    Article Google Scholar
  45. Nicholls,A., Sharp,K. A. & Honig,B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).
    Article CAS Google Scholar
  46. Harrison,S. J. et al. Mammalian reovirus L3 gene sequences and evidence for a distinct amino-terminal region of the lambda1 protein. Virology 258, 54–64 (1999).
    Article CAS Google Scholar

Download references