Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol.13, 745–777 (1997). ArticleCAS Google Scholar
Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol.10, 60–73 (1998). ArticleCAS Google Scholar
Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol. Chem.380, 915–921 (1999). ArticleCAS Google Scholar
Diefenbach, R. J., Mackay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry37, 16663–16670 (1998). ArticleCAS Google Scholar
Verhey, K. J. et al. Light chain-dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol.143, 1053–1066 (1998). ArticleCAS Google Scholar
Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature342, 154–158 (1989). ArticleCAS Google Scholar
Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature348, 348–352 (1990). ArticleCAS Google Scholar
Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature377, 448–450 (1995). ArticleCAS Google Scholar
Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA91, 6865–6869 (1994). ArticleCAS Google Scholar
Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature402, 778–784 (1999). ArticleCAS Google Scholar
Jiang, W., Stock, M., Li, X. & Hackney, D. D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. J. Biol. Chem.272, 7626–7632 (1997). ArticleCAS Google Scholar
Wagner, M. C., Pfister, K. K., Bloom, G. S. & Brady, S. T. Copurification of kinesin polypeptides with microtubule- stimulated magnesium ATPase activity and kinetic analysis of enzymic properties. Cell Motil. Cytoskeleton12, 195–215 (1989). ArticleCAS Google Scholar
Hackney, D. D., Levitt, J. D. & Wagner, D. D. Characterization of α2β2 and α2 forms of kinesin. Biochem. Biophys. Res. Comm.174, 810–815 (1991). ArticleCAS Google Scholar
Jiang, M. Y. & Sheetz, M. P. Cargo-activated ATPAse activity of kinesin. Biophys. J.68 (Suppl.), 283–285 (1995). Google Scholar
Moraga, D. E. & Murphy, D. B. Kinesin is ‘inactive’ unless bound to a solid support. Mol. Biol. Cell8, 258a–258a (1997). Google Scholar
Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol.1, 288–292 (1999). ArticleCAS Google Scholar
Hisanaga, S. et al. The molecular structure of adrenal medulla kinesin. Cell Motil. Cytoskeleton12, 264–272 (1989). ArticleCAS Google Scholar
Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem.267, 8696–8701 (1992). CASPubMed Google Scholar
Stock, M. F. et al. Formation of the compact conformer of kinesin requires a C-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem.274, 14617–14623 (1999). ArticleCAS Google Scholar
Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol.1, 293–297 (1999). ArticleCAS Google Scholar
Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol.117, 1263–1275 (1992). ArticleCAS Google Scholar
Cross, R. A., Jackson, A. P., Citi, S., Kendrick-Jones, J. & Bagshaw, C. R. Active site trapping of nucleotide by smooth and non-muscle myosins. J. Mol. Biol.203, 173–181 (1988). ArticleCAS Google Scholar
Cheng, J. Q., Jiang, W. & Hackney, D. D. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Biochemistry37, 5288–5295 (1998). ArticleCAS Google Scholar
Hackney, D. D. The rate limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J. Biol. Chem.269, 16508–16511 (1994). CASPubMed Google Scholar
Kirchner, J., Seiler, S., Fuchs, S. & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J.18, 4404–4413 (1999). ArticleCAS Google Scholar
Hackney, D. D. Isolation of kinesin using initial batch ion exchange. Methods Enzymol.196, 175–181 (1991). ArticleCAS Google Scholar
Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem.269, 16493–16501 (1994). CASPubMed Google Scholar
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976). ArticleCAS Google Scholar
Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brillant Blue G-250 and R-250. Electrophoresis9, 255–262 (1988). ArticleCAS Google Scholar
Ingold, A. L., Cohn, S. A. & Scholey, J. M. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains. J. Cell Biol.107, 2659–2670 (1988). ArticleCAS Google Scholar