Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release (original) (raw)

References

  1. Vale, R. D. & Fletterick, R. J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).
    Article CAS Google Scholar
  2. Hirokawa, N., Noda, Y. & Okada, Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73 (1998).
    Article CAS Google Scholar
  3. Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol. Chem. 380, 915–921 (1999).
    Article CAS Google Scholar
  4. Diefenbach, R. J., Mackay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 (1998).
    Article CAS Google Scholar
  5. Verhey, K. J. et al. Light chain-dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol. 143, 1053–1066 (1998).
    Article CAS Google Scholar
  6. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).
    Article CAS Google Scholar
  7. Block, S. M., Goldstein, L. S. B. & Schnapp, B. J. Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990).
    Article CAS Google Scholar
  8. Hackney, D. D. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995).
    Article CAS Google Scholar
  9. Hackney, D. D. Evidence for alternating head catalysis by kinesin during microtubule-stimulated ATP hydrolysis. Proc. Natl Acad. Sci. USA 91, 6865–6869 (1994).
    Article CAS Google Scholar
  10. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).
    Article CAS Google Scholar
  11. Jiang, W., Stock, M., Li, X. & Hackney, D. D. Influence of the kinesin neck domain on dimerization and ATPase kinetics. J. Biol. Chem. 272, 7626–7632 (1997).
    Article CAS Google Scholar
  12. Wagner, M. C., Pfister, K. K., Bloom, G. S. & Brady, S. T. Copurification of kinesin polypeptides with microtubule- stimulated magnesium ATPase activity and kinetic analysis of enzymic properties. Cell Motil. Cytoskeleton 12, 195–215 (1989).
    Article CAS Google Scholar
  13. Hackney, D. D., Levitt, J. D. & Wagner, D. D. Characterization of α2β2 and α2 forms of kinesin. Biochem. Biophys. Res. Comm. 174, 810–815 (1991).
    Article CAS Google Scholar
  14. Jiang, M. Y. & Sheetz, M. P. Cargo-activated ATPAse activity of kinesin. Biophys. J. 68 (Suppl.), 283–285 (1995).
    Google Scholar
  15. Moraga, D. E. & Murphy, D. B. Kinesin is ‘inactive’ unless bound to a solid support. Mol. Biol. Cell 8, 258a–258a (1997).
    Google Scholar
  16. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nature Cell Biol. 1, 288–292 (1999).
    Article CAS Google Scholar
  17. Hisanaga, S. et al. The molecular structure of adrenal medulla kinesin. Cell Motil. Cytoskeleton 12, 264–272 (1989).
    Article CAS Google Scholar
  18. Hackney, D. D., Levitt, J. D. & Suhan, J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).
    CAS PubMed Google Scholar
  19. Stock, M. F. et al. Formation of the compact conformer of kinesin requires a C-terminal heavy chain domain and inhibits microtubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).
    Article CAS Google Scholar
  20. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293–297 (1999).
    Article CAS Google Scholar
  21. Navone, F. et al. Cloning and expression of a human kinesin heavy chain gene: interaction of the COOH-terminal domain with cytoplasmic microtubules in transfected CV-1 cells. J. Cell Biol. 117, 1263–1275 (1992).
    Article CAS Google Scholar
  22. Cross, R. A., Jackson, A. P., Citi, S., Kendrick-Jones, J. & Bagshaw, C. R. Active site trapping of nucleotide by smooth and non-muscle myosins. J. Mol. Biol. 203, 173–181 (1988).
    Article CAS Google Scholar
  23. Cheng, J. Q., Jiang, W. & Hackney, D. D. Interaction of mant-adenosine nucleotides and magnesium with kinesin. Biochemistry 37, 5288–5295 (1998).
    Article CAS Google Scholar
  24. Hackney, D. D. The rate limiting step in microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains occurs while bound to the microtubule. J. Biol. Chem. 269, 16508–16511 (1994).
    CAS PubMed Google Scholar
  25. Kirchner, J., Seiler, S., Fuchs, S. & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J. 18, 4404–4413 (1999).
    Article CAS Google Scholar
  26. Hackney, D. D. Isolation of kinesin using initial batch ion exchange. Methods Enzymol. 196, 175–181 (1991).
    Article CAS Google Scholar
  27. Huang, T.-G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).
    CAS PubMed Google Scholar
  28. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
    Article CAS Google Scholar
  29. Neuhoff, V., Arold, N., Taube, D. & Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brillant Blue G-250 and R-250. Electrophoresis 9, 255–262 (1988).
    Article CAS Google Scholar
  30. Ingold, A. L., Cohn, S. A. & Scholey, J. M. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains. J. Cell Biol. 107, 2659–2670 (1988).
    Article CAS Google Scholar

Download references