Frequent chromosomal translocations induced by DNA double-strand breaks (original) (raw)

References

  1. Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).
    Article ADS CAS Google Scholar
  2. Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nature Genet. 15, 417–474 (1997).
    Article CAS Google Scholar
  3. Tycko, B. & Sklar, J. Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells 2, 1–8 (1990).
    CAS PubMed Google Scholar
  4. Lewis, S. M. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27–149 (1994).
    Article CAS Google Scholar
  5. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).
    Article CAS Google Scholar
  6. Cornforth, M. N. & Bedford, J. S. Ionizing radiation damage and its early development in chromosomes. Adv. Radiat. Biol. 17, 423–496 (1993).
    Article Google Scholar
  7. Ikeda, H. DNA topoisomerase-mediated illegitimate recombination. Adv. Pharmacol. 29A, 147–165 (1994).
    Article CAS Google Scholar
  8. Wang, P., Zhou, R., Zou, Y., Jackson-Cook, C. & Povirk, L. Highly conservative reciprocal translocations formed by apparent joining of exchanged DNA double-strand break ends. Proc. Natl Acad. Sci. USA 94, 12018–12023 (1997).
    Article ADS CAS Google Scholar
  9. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).
    Article CAS Google Scholar
  10. Sargent, R. G., Brenneman, M. A. & Wilson, J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).
    Article CAS Google Scholar
  11. Liang, F., Han, M., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Nat. Acad. Sci. USA 95, 5172–5177 (1998).
    Article ADS CAS Google Scholar
  12. Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402 (1992).
    CAS PubMed PubMed Central Google Scholar
  13. Johnson, R. D., Liu, N. & Jasin, M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401, 397–399 (1999).
    ADS CAS PubMed Google Scholar
  14. Lin, F. L., Sperle, K. & Sternberg, N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4, 1020–1034 (1984).
    Article CAS Google Scholar
  15. Jeggo, P. A. DNA breakage and repair. Adv. Genet. 38, 185–218 (1998).
    Article CAS Google Scholar
  16. Cooper, D. N., Krawczak, M. & Antonarkis, S. E. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 65–94 (McGraw-Hill, New York, 1998).
    Google Scholar
  17. Richardson, C., Moynahan, M. E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998).
    Article CAS Google Scholar
  18. Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).
    Article ADS CAS Google Scholar
  19. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 8–85 (1999).
    Google Scholar
  20. Gillert, E. et al. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 18, 4663–4671 (1999).
    Article CAS Google Scholar
  21. Colleaux, L., d’Auriol, L., Gailbert, F. & Dujon, B. Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl Acad. Sci. 85, 6022–6026 (1988).
    Article ADS CAS Google Scholar
  22. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996).
    Article CAS Google Scholar
  23. Beumer, K. J., Pimpinelli, S. & Golic, K. G. Induced chromosomal exchange directs the segregation of recombinant chromatids in mitosis of Drosophila. Genetics 150, 173–188 (1998).
    CAS PubMed PubMed Central Google Scholar
  24. Strout, M. P., Marcucci, G., Bloomfield, C. D. & Caligiuri, M. A. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc. Natl Acad. Sci. USA 95, 2390–2395 (1998).
    Article ADS CAS Google Scholar
  25. Andreasson, P. et al. Molecular characterization of jumping translocations reveals spatial and temporal breakpoint heterogeneity. Leukemia 12, 1411–1416 (1998).
    Article CAS Google Scholar
  26. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).
    Article CAS Google Scholar
  27. Coleman, A. E., Kovalchuk, A. L., Janz, S., Palini, A. & Ried, T. Jumping translocation breakpoint regions lead to amplification of rearranged myc. Blood 93, 4442–4444 (1999).
    CAS PubMed Google Scholar
  28. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed repair. Mol. Cell 4, 511–518 (1999).
    Article CAS Google Scholar
  29. Moynahan, M. E. & Jasin, M. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl Acad. Sci. USA 94, 8988–8993 (1997).
    Article ADS CAS Google Scholar

Download references