The segment polarity network is a robust developmental module (original) (raw)

References

  1. Patel, N. H. The evolution of arthropod segmentation: insights from comparisons of gene expression patterns. Dev. Suppl. 201– 207 (1994).
  2. Brown, S. J., Hilgenfeld, R. B. & Denell, R. E. The beetle Tribolium castaneum has a fushi tarazu homolog expressed in stripes during segmentation. Proc. Natl Acad. Sci. USA 91, 12922–12926 (1994).
    Article ADS CAS Google Scholar
  3. Grbic, M., Nagy, L. M., Carroll, S. B. & Strand, M. Polyembryonic development: insect pattern formation in a cellularized environment. Development 122, 795–804 (1996).
    CAS PubMed Google Scholar
  4. Brown, S. J., Parrish, J. K., Beeman, R. W. & Denell, R. E. Molecular characterization and embryonic expression of the even-skipped ortholog of Tribolium castaneum. Mech. Dev. 61, 165–173 (1997).
    Article CAS Google Scholar
  5. Patel, N. H., Ball, E. E. & Goodman, C. S. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342 (1992).
    Article ADS CAS Google Scholar
  6. Dawes, R., Dawson, I., Falciani, F., Tear, G. & Akam, M. Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development 120, 1561– 1572 (1994).
    CAS PubMed Google Scholar
  7. Patel, N. H., Kornberg, T. B. & Goodman, C. S. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107, 201– 212 (1989).
    CAS PubMed Google Scholar
  8. Brown, S. J., Patel, N. H. & Denell, R. E. Embryonic expression of the single Tribolium engrailed homolog. Dev. Genet. 15, 7– 18 (1994).
    Article CAS Google Scholar
  9. Nagy, L. M. & Carroll, S. Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367, 460–463 ( 1994).
    Article ADS CAS Google Scholar
  10. Oppenheimer, D. I., MacNicol, A. M. & Patel, N. H. Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr. Biol. 9, 1288–1296 (1999).
    Article CAS Google Scholar
  11. Akam, M. The molecular basis for metameric pattern in the Drosophila embryo. Development 101, 1–22 (1987).
    CAS PubMed Google Scholar
  12. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. A. & O'Farrell, P. H. Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332, 604–609 (1988).
    Article ADS CAS Google Scholar
  13. Ingham, P. W., Baker, N. E. & Martinez-Arias, A. Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Nature 331, 73–75 (1988).
    Article ADS CAS Google Scholar
  14. Martinez Arias, A., Baker, N. E. & Ingham, P. W. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 157–170 (1988).
    CAS PubMed Google Scholar
  15. DiNardo, S., Heemskerk, J., Dougan, S. & O'Farrell, P. H. The making of a maggot: patterning the Drosophila embryonic epidermis. Curr. Opin. Genet. Dev. 4, 529– 534 (1994).
    Article CAS Google Scholar
  16. Hooper, J. E. Distinct pathways for autocrine and paracrine Wingless signalling in Drosophila embryos. Nature 372, 461– 464 (1994).
    Article ADS CAS Google Scholar
  17. Aza-Blanc, P., Ramirez-Weber, F. A., Laget, M. P., Schwartz, C. & Kornberg, T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89, 1043– 1053 (1997).
    Article CAS Google Scholar
  18. Kauffman, S. A. The Origins of Order: Self Organization and Selection in Evolution (Oxford Univ. Press, New York, 1993).
    Google Scholar
  19. Sanchez, L, van Helden, J. & Thieffry, D. Establishment of the dorso-ventral pattern during embryonic development of drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389 (1997).
    Article CAS Google Scholar
  20. Slack, J. M. W. From Egg to Embryo: Determinative Events in Early Development (Cambridge Univ. Press, New York, 1983).
    Google Scholar
  21. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913– 917 (1997).
    Article ADS CAS Google Scholar
  22. Morton-Firth, C. J., Shimizu, T. S. & Bray, D. A free-energy-based stochastic simulation of the Tar receptor complex. J. Mol. Biol. 286, 1059 –1074 (1999).
    Article CAS Google Scholar
  23. Heemskerk, J., DiNardo, S., Kostriken, R. & O'Farrell, P. H. Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404– 410 (1991).
    Article ADS CAS Google Scholar
  24. Vincent, J. P. & Lawrence, P. A. Drosophila wingless sustains engrailed expression only in adjoining cells: evidence from mosaic embryos. Cell 77, 909– 915 (1994).
    Article CAS Google Scholar
  25. Tabata, T., Eaton, S. & Kornberg, T. B. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635–2645 (1992).
    Article CAS Google Scholar
  26. Schwartz, C., Locke, J., Nishida, C. & Kornberg, T. B. Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks. Development 121, 1625– 1635 (1995).
    CAS PubMed Google Scholar
  27. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553– 563 (1996).
    Article CAS Google Scholar
  28. Alexandre, C., Jacinto, A. & Ingham, P. W. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins. Genes Dev. 10, 2003–2013 (1996).
    Article CAS Google Scholar
  29. Dominguez, M., Brunner, M., Hafen, E. & Basler, K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science 272, 1621– 1625 (1996).
    Article ADS CAS Google Scholar
  30. Von Ohlen, T., Lessing, D., Nusse, R. & Hooper, J. E. Hedgehog signaling regulates transcription through cubitus interruptus, a sequence-specific DNA binding protein. Proc. Natl Acad. Sci. USA 94, 2404–2409 (1997).
    Article ADS CAS Google Scholar

Download references