Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome (original) (raw)
References
Wolf, B. & Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem.274, 20049–20052 (1999). ArticleCAS Google Scholar
Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell86, 147–157 (1996). ArticleCAS Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell90, 405–413 (1997). ArticleCAS Google Scholar
Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell1, 949–957 (1998). ArticleCAS Google Scholar
Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem.274, 11549–11556 (1999). ArticleCAS Google Scholar
Cain, K. et al. Apaf-1 oligomerizes into biologically active ~700-kDa and inactive ~1.4-MDa apoptosome complexes. J. Biol. Chem.275, 6067–6070 (2000). ArticleCAS Google Scholar
Cain, K., Brown, D. G., Langlais, C. & Cohen, G. M. Caspase activation involves the formation of the aposome, a large (~700 kDa) caspase-activating complex. J. Biol. Chem.274, 22686–22692 (1999). ArticleCAS Google Scholar
Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J.18, 3586–3595 (1999). ArticleCAS Google Scholar
Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet.22, 631–677 (1988). ArticleCAS Google Scholar
Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature355, 33–45 (1992). ArticleCAS Google Scholar
Parsell, D. A., Taulien, J. & Lindquist, S. The role of heat-shock proteins in thermotolerance. Phil. Trans. R. Soc. Lond. B339, 279–285 (1993). ArticleCAS Google Scholar
Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet.27, 437–496 (1993). ArticleCAS Google Scholar
Milarski, K. L. & Morimoto, R. I. Expression of human HSP70 during the synthetic phase of the cell cycle. Proc. Natl Acad. Sci. USA83, 9517–9521 (1986). ArticleCAS Google Scholar
Samali, A. & Orrenius, S. Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones3, 228–236 (1998). ArticleCAS Google Scholar
Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res.248, 30–43 (1999). ArticleCAS Google Scholar
Freeman, B. C., Myers, M. P., Schumacher, R. & Morimoto, R. I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J.14, 2281–2292 (1995). ArticleCAS Google Scholar
Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science275, 1132–1136 (1997). ArticleCAS Google Scholar
Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell91, 479–489 (1997). ArticleCAS Google Scholar
Stennicke, H. R. et al. Caspase-9 can be activated without proteolytic processing. J. Biol. Chem.274, 8359–8362 (1999). ArticleCAS Google Scholar
Benedict, M. A., Hu, Y., Inohara, N. & Nunez, G. Expression and functional analysis of Apaf-1 isoforms. Extra WD-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461–8468 (2000). ArticleCAS Google Scholar
Hahn, G. M. & Li, G. C. Thermotolerance and heat shock proteins in mammalian cells. Radiat. Res.92, 452–457 (1982). ArticleCAS Google Scholar
Mosser, D. D. & Martin, L. H. Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J. Cell Physiol.151, 561–570 (1992). ArticleCAS Google Scholar
Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol.17, 5317–5327 (1997). ArticleCAS Google Scholar
Samali, A. & Cotter, T. G. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res.223, 163–170 (1996). ArticleCAS Google Scholar
Simon, M. M. et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J. Clin. Invest.95, 926–933 (1995). ArticleCAS Google Scholar
Jaattela, M., Wissing, D., Bauer, P. A. & Li, G. C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 11, 3507–3512 (1992). ArticleCAS Google Scholar
Liossis, S. N., Ding, X. Z., Kiang, J. G. & Tsokos, G. C. Overexpression of the heat shock protein 70 enhances the TCR/CD 3- and Fas/Apo-1/CD 95-mediated apoptotic cell death in Jurkat T cells. J. Immunol.158, 5668–5675 (1997). CASPubMed Google Scholar
Creagh, E. M. & Cotter, T. G. Selective protection by hsp70 against cytotoxic drug-, but not Fas- induced T-cell apoptosis. Immunology97, 36–44 (1999). ArticleCAS Google Scholar
Mehlen, P., Schulze-Osthoff, K. & Arrigo, A. P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem.271, 16510–16514 (1996). ArticleCAS Google Scholar
Li, C-Y., Lee, J-S., Ko, Y-G., Kim, J-I., & Seo, J-S. Hsp70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. (in the press).
Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T. & Egeblad, M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124–6134 (1998). ArticleCAS Google Scholar
Gabai, V. L. et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem. 272, 18033–18037 (1997). ArticleCAS Google Scholar
Patriarca, E. J. & Maresca, B. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Exp. Cell. Res.190, 57–64 (1990). ArticleCAS Google Scholar
Polla, B. S. et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl Acad. Sci. USA93, 6458–6463 (1996). ArticleCAS Google Scholar
Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992). ArticleCAS Google Scholar
Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev.13, 1367–1381 (1999). ArticleCAS Google Scholar
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell94, 727–737 (1998). ArticleCAS Google Scholar
Yoshida, H. et al. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell94, 739–750 (1998). ArticleCAS Google Scholar
Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science284, 156–159 (1999). ArticleCAS Google Scholar
Xanthoudakis, S. et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049–2056 (1999). ArticleCAS Google Scholar
Wolf, B., Schuler, M., Echeverri, F. & Green, D. R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DFF 45/ICAD inactivation. J. Biol. Chem. 274, 30651–30656 (1999). ArticleCAS Google Scholar
Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev.13, 3179–3184 (1999). ArticleCAS Google Scholar
Wolf, B.B. et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood94, 1683–1692 (1999). CASPubMed Google Scholar