Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome (original) (raw)

References

  1. Wolf, B. & Green, D. R. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274, 20049–20052 (1999).
    Article CAS Google Scholar
  2. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).
    Article CAS Google Scholar
  3. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell 90, 405–413 (1997).
    Article CAS Google Scholar
  4. Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1, 949–957 (1998).
    Article CAS Google Scholar
  5. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).
    Article CAS Google Scholar
  6. Cain, K. et al. Apaf-1 oligomerizes into biologically active ~700-kDa and inactive ~1.4-MDa apoptosome complexes. J. Biol. Chem. 275, 6067–6070 (2000).
    Article CAS Google Scholar
  7. Cain, K., Brown, D. G., Langlais, C. & Cohen, G. M. Caspase activation involves the formation of the aposome, a large (~700 kDa) caspase-activating complex. J. Biol. Chem. 274, 22686–22692 (1999).
    Article CAS Google Scholar
  8. Hu, Y., Benedict, M. A., Ding, L. & Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis. EMBO J. 18, 3586–3595 (1999).
    Article CAS Google Scholar
  9. Lindquist, S. & Craig, E. A. The heat-shock proteins. Annu. Rev. Genet. 22, 631–677 (1988).
    Article CAS Google Scholar
  10. Gething, M. J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).
    Article CAS Google Scholar
  11. Parsell, D. A., Taulien, J. & Lindquist, S. The role of heat-shock proteins in thermotolerance. Phil. Trans. R. Soc. Lond. B 339, 279–285 (1993).
    Article CAS Google Scholar
  12. Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).
    Article CAS Google Scholar
  13. Milarski, K. L. & Morimoto, R. I. Expression of human HSP70 during the synthetic phase of the cell cycle. Proc. Natl Acad. Sci. USA 83, 9517–9521 (1986).
    Article CAS Google Scholar
  14. Samali, A. & Orrenius, S. Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3, 228–236 (1998).
    Article CAS Google Scholar
  15. Jaattela, M. Escaping cell death: survival proteins in cancer. Exp. Cell Res. 248, 30–43 (1999).
    Article CAS Google Scholar
  16. Freeman, B. C., Myers, M. P., Schumacher, R. & Morimoto, R. I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 14, 2281–2292 (1995).
    Article CAS Google Scholar
  17. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).
    Article CAS Google Scholar
  18. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).
    Article CAS Google Scholar
  19. Stennicke, H. R. et al. Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 274, 8359–8362 (1999).
    Article CAS Google Scholar
  20. Benedict, M. A., Hu, Y., Inohara, N. & Nunez, G. Expression and functional analysis of Apaf-1 isoforms. Extra WD-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461–8468 (2000).
    Article CAS Google Scholar
  21. Hahn, G. M. & Li, G. C. Thermotolerance and heat shock proteins in mammalian cells. Radiat. Res. 92, 452–457 (1982).
    Article CAS Google Scholar
  22. Mosser, D. D. & Martin, L. H. Induced thermotolerance to apoptosis in a human T lymphocyte cell line. J. Cell Physiol. 151, 561–570 (1992).
    Article CAS Google Scholar
  23. Mosser, D. D., Caron, A. W., Bourget, L., Denis-Larose, C. & Massie, B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol. Cell Biol. 17, 5317–5327 (1997).
    Article CAS Google Scholar
  24. Samali, A. & Cotter, T. G. Heat shock proteins increase resistance to apoptosis. Exp. Cell Res. 223, 163–170 (1996).
    Article CAS Google Scholar
  25. Simon, M. M. et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J. Clin. Invest. 95, 926–933 (1995).
    Article CAS Google Scholar
  26. Jaattela, M., Wissing, D., Bauer, P. A. & Li, G. C. Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J. 11, 3507–3512 (1992).
    Article CAS Google Scholar
  27. Liossis, S. N., Ding, X. Z., Kiang, J. G. & Tsokos, G. C. Overexpression of the heat shock protein 70 enhances the TCR/CD 3- and Fas/Apo-1/CD 95-mediated apoptotic cell death in Jurkat T cells. J. Immunol. 158, 5668–5675 (1997).
    CAS PubMed Google Scholar
  28. Creagh, E. M. & Cotter, T. G. Selective protection by hsp70 against cytotoxic drug-, but not Fas- induced T-cell apoptosis. Immunology 97, 36–44 (1999).
    Article CAS Google Scholar
  29. Mehlen, P., Schulze-Osthoff, K. & Arrigo, A. P. Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J. Biol. Chem. 271, 16510–16514 (1996).
    Article CAS Google Scholar
  30. Li, C-Y., Lee, J-S., Ko, Y-G., Kim, J-I., & Seo, J-S. Hsp70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. (in the press).
  31. Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T. & Egeblad, M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 17, 6124–6134 (1998).
    Article CAS Google Scholar
  32. Gabai, V. L. et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem. 272, 18033–18037 (1997).
    Article CAS Google Scholar
  33. Patriarca, E. J. & Maresca, B. Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Exp. Cell. Res. 190, 57–64 (1990).
    Article CAS Google Scholar
  34. Polla, B. S. et al. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl Acad. Sci. USA 93, 6458–6463 (1996).
    Article CAS Google Scholar
  35. Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).
    Article CAS Google Scholar
  36. Juin, P., Hueber, A. O., Littlewood, T. & Evan, G. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev. 13, 1367–1381 (1999).
    Article CAS Google Scholar
  37. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf-1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).
    Article CAS Google Scholar
  38. Yoshida, H. et al. Apaf-1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).
    Article CAS Google Scholar
  39. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).
    Article CAS Google Scholar
  40. Xanthoudakis, S. et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049–2056 (1999).
    Article CAS Google Scholar
  41. Wolf, B., Schuler, M., Echeverri, F. & Green, D. R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DFF 45/ICAD inactivation. J. Biol. Chem. 274, 30651–30656 (1999).
    Article CAS Google Scholar
  42. Rodriguez, J. & Lazebnik, Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179–3184 (1999).
    Article CAS Google Scholar
  43. Wolf, B.B. et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 94, 1683–1692 (1999).
    CAS PubMed Google Scholar

Download references