A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity (original) (raw)

References

  1. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79, 73–98 (1999).
    Article CAS Google Scholar
  2. Cereijido, M., Valdes, J., Shoshani, L. & Contreras, R. G. Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60, 161–177 (1998).
    Article CAS Google Scholar
  3. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 ( 1996).
    Article CAS Google Scholar
  4. Lin, H. & Schagat, T. Neuroblasts: a model for the asymmetric division of stem cells. Trends Genet. 13, 33–39 (1997).
    Article CAS Google Scholar
  5. Knoblich, J. A. Mechanisms of asymmetric cell division during animal development. Curr. Opin. Cell Biol. 9, 833–841 (1997).
    Article CAS Google Scholar
  6. Muller, H. A. & Wieschaus, E. armadillo, bazooka and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. J. Cell Biol. 134, 149– 163 (1996).
    Google Scholar
  7. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311–320 (1988).
    Article CAS Google Scholar
  8. Etemad-Moghadam, B., Guo, S., & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell 83, 743–752 ( 1995).
    Article CAS Google Scholar
  9. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that co-localizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).
    CAS PubMed Google Scholar
  10. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 ( 1998).
    CAS PubMed Google Scholar
  11. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81 , 611–620 (1995).
    Google Scholar
  12. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122, 3075–3084 (1996).
    CAS PubMed Google Scholar
  13. Cheng, N. N., Kirby, C. M. & Kemphues, K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139, 549–559 ( 1995).
    CAS PubMed PubMed Central Google Scholar
  14. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133– 3140 (1996).
    CAS PubMed Google Scholar
  15. Hartenstein, V. & Campos-Ortega, J. A. Early neurogenesis in wild-type Drosophila melanogaster. Roux’s Arch. Dev. Biol. 193, 308–325 ( 1984).
    Article Google Scholar
  16. Doe, C. Q. Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116, 855–863 (1992).
    CAS PubMed Google Scholar
  17. Bossing, T., Udolph, G., Doe, C. Q. & Technau, G. M. The embryonic central nervous system lineages of Drosophila melanogaster: I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64 (1996).
    Article CAS Google Scholar
  18. Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeletal adaptor protein. Dev. Biol. 174, 65– 81 (1996).
    Google Scholar
  19. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50 –55 (1996).
    Article CAS Google Scholar
  20. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).
    Article CAS Google Scholar
  21. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 ( 1999).
    Article CAS Google Scholar
  22. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).
    Article CAS Google Scholar
  23. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in Inscuteable apical localization. Cell 100, 399–409 (2000).
    Article CAS Google Scholar
  24. Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).
    Article CAS Google Scholar
  25. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).
    Article CAS Google Scholar
  26. Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E. & Jahn, R. A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 238, 1142–4 (1987).
    Article CAS Google Scholar
  27. Johnston, P. A., Jahn, R. & Sudhof, T. C. Transmembrane topography and evolutionary conservation of synaptophysin. J. Biol. Chem. 264, 1268 –73 (1989).
    CAS PubMed Google Scholar
  28. Garcia, E. P., McPherson, P. S., Chilcote, T. J., Takei, K. & DeCamilli, P. rbSec1 A and B colocalize with syntaxin one and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 129, 105– 120 (1995).
    Article CAS Google Scholar
  29. Burbelo, P. D., Drechsel, D. & Hall, A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 ( 1995).
    Article CAS Google Scholar
  30. Hillier, B. J., Christopherson, K. S., Prehoda, K. E., Bredt, D. S. & Lim, W. A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS–Syntrophin complex. Science 284, 812–815 ( 1999).
    Article CAS Google Scholar
  31. Colman, D. R. Neuronal polarity and the epithelial metaphor. Neuron 23, 649–651 (1999).
    Article CAS Google Scholar
  32. Bredt, D. S. Sorting out genes that regulate epithelial and neuronal polarity. Cell 94, 691–694 ( 1998).
    Article CAS Google Scholar
  33. Dotti, C. G. & Simons, K. Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62, 63–72 ( 1990).
    Article CAS Google Scholar
  34. Huttner, W. B. & Brand, M. Asymmetric division and polarity of neuroepithelial cells. Curr. Opin. Neurobiol. 7, 29–39 (1997).
    Article CAS Google Scholar
  35. Van Aelst, L. & D’Souza-Schorey, C. Rho GTPases and signalling networks. Genes Dev. 11, 2295–2322 (1997).
    Article CAS Google Scholar
  36. Mackay, D. J. G. & Hall, A. Rho GTPases. J. Biol. Chem. 273, 20685–20688 (1998).
    Article CAS Google Scholar
  37. Hird, S. N. & White, J. G. Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans. J. Cell Biol. 121, 1343–1355 ( 1993).
    Article CAS Google Scholar
  38. Hill, D. P. & Strome, S. An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. Dev. Biol. 125, 75– 84 (1988).
    Article CAS Google Scholar
  39. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).
    Article CAS Google Scholar
  40. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).
    Article CAS Google Scholar
  41. Nakanishi, H., Brewer, K. A. & Exton, J. H. Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 268, 13–16 ( 1993).
    CAS PubMed Google Scholar
  42. Standaert, M. L. et al. Protein kinase C as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J. Biol. Chem. 272, 30075– 30082 (1997).
    Article CAS Google Scholar
  43. Self, A. J. & Hall, A. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol. 256, 3–10 (1995).
    Article CAS Google Scholar
  44. Hart, M. J. et al. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269, 62–65 (1994).
    CAS PubMed Google Scholar
  45. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol. 96, 1374– 1388 (1983).
    Article CAS Google Scholar
  46. Hell, J. W. & Jahn, R. in Cell Biology: a Laboratory Manual (ed. Celis, J. E.) 567–574 (Academic, San Diego, 1997).
  47. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

Download references