A colorimetric sensor array for odour visualization (original) (raw)

Nature volume 406, pages 710–713 (2000)Cite this article

Abstract

Array-based vapour-sensing devices are used to detect and differentiate between chemically diverse analytes. These systems—based on cross-responsive sensor elements—aim to mimic the mammalian olfactory system1,2,3 by producing composite responses unique to each odorant. Previous work has concentrated on a variety of non-specific chemical interactions4,5,6,7,8,9,10,11 to detect non-coordinating organic vapours. But the most odiferous, toxic compounds often bind readily to metal ions. Here we report a simple optical chemical sensing method that utilizes the colour change induced in an array of metalloporphyrin dyes upon ligand binding while minimizing the need for extensive signal transduction hardware. The chemoselective response of a library of immobilized vapour-sensing metalloporphyrin dyes permits the visual identification of a wide range of ligating (alcohols, amines, ethers, phosphines, phosphites, thioethers and thiols) and even weakly ligating (arenes, halocarbons and ketones) vapours. Water vapour does not affect the performance of the device, which shows a good linear response to single analytes, and interpretable responses to analyte mixtures. Unique colour fingerprints can be obtained at analyte concentrations below 2 parts per million, and responses to below 100 parts per billion have been observed. We expect that this type of sensing array will be of practical importance for general-purpose vapour dosimeters and analyte-specific detectors (for insecticides, drugs or neurotoxins, for example).

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Dryer, L. & Berghard, A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol. Sci. 20, 413–417 (1999).
    Article CAS Google Scholar
  2. Lancet, D. & Ben-Arie, N. Olfactory receptors. Curr. Biol. 3, 668–674 ( 1993).
    Article CAS Google Scholar
  3. Axel, R. The molecular logic of smell. Sci. Am. 273, 154–159 (1995).
    Article CAS Google Scholar
  4. Freund, M. S. & Lewis, N. S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl Acad. Sci. USA 92, 2652–2656 ( 1995).
    Article ADS CAS Google Scholar
  5. Lonergan, M. C. et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater. 8, 2298–2312 (1996).
    Article CAS Google Scholar
  6. Walt, D. R. Fiber optic imaging sensors. Acc. Chem. Res. 31, 267–278 (1998).
    Article CAS Google Scholar
  7. Dickinson, T. A., White, J., Kauer, J. S. & Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700 (1996).
    Article ADS CAS Google Scholar
  8. Heilig, A. et al. Gas identification by modulating temperatures of SnO2-based thick film resistors. Sens. Actuators B 43, 45–51 (1997).
    Article CAS Google Scholar
  9. Gardner, J. W., Shurmer, H. V. & Tan, T. T. Application of an electronic nose to the discrimination of coffees. Sens. Actuators B 6, 71– 75 (1992).
    Article CAS Google Scholar
  10. Crooks, R. M. & Ricco, A. J. New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998).
    Article CAS Google Scholar
  11. Grate, J. W. & Abraham, M. H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuators B 3, 85– 111 (1991).
    Article CAS Google Scholar
  12. Gelperin, A., Flores, J. & Raccuia-Behling, F. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk. J. Neurophysiol. 83, 116–127 ( 2000).
    Article CAS Google Scholar
  13. Baron, A. E., Danielson, J. D. S., Gouterman, M., Wan, J. R. & Callis, J. B. Submillisecond response times of oxygen-quenched luninescent coatings. Rev. Sci. Instrum. 64, 3394–3402 (1993).
    Article ADS CAS Google Scholar
  14. Lee, W. et al. Halogenated platinum porphyrins as sensing materials for luminescence-based oxygen sensors. J. Mater. Chem. 3, 1031– 1035 (1993).
    Article CAS Google Scholar
  15. Vaughan, A. A., Baron, M. G. & Narayanaswamy, R. Optical ammonia sensing films based on an immobilized metalloporphyrin. Anal. Commun. 33, 393– 396 (1996).
    Article CAS Google Scholar
  16. Brunink, J. A. J. et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Anal. Chim. Acta 325, 53–64 (1996).
    Article CAS Google Scholar
  17. Di Natale, C. et al. The exploitation of metalloporphyrins as chemically interactive material in chemical sensors. Mater. Sci. Eng. C 5, 209–215 (1998).
    Article Google Scholar
  18. Blauer, G. & Sund, H. (eds) Optical Properties and Structure of Tetrapyrroles (de Gruyter, Berlin, 1985).
    Google Scholar
  19. Nappa, M. & Valentine, J. S. The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc. J. Am. Chem. Soc. 100, 5075– 5080 (1978).
    Article CAS Google Scholar
  20. Suslick, K. S. & Van Deusen-Jeffries, S. in Comprehensive Supramolecular Chemistry (ed. Lehn, J. M.) 141– 170 (Elsevier, Oxford, 1996).
    Google Scholar
  21. Bhyrappa, P., Young, J. K., Moore, J. S. & Suslick, K. S. Dendrimer porphyrins: synthesis and catalysis. J. Am. Chem. Soc. 118, 5708–5711 ( 1996).
    Article CAS Google Scholar
  22. Chou, J.-H., Nalwa, H. S., Kosal, M. E., Rakow, N. A. & Suslick, K. S. in The Porphyrin Handbook (eds Kadish, K., Smith, K. & Guilard, R.) 43–132 (Academic, New York, 2000).
    Google Scholar
  23. Bhyrappa, P., Vaijayanthimala, G. & Suslick, K. S. Shape-selective ligation to dendrimer-metalloporphyrins. J. Am. Chem. Soc. 121, 262– 263 (1999).
    Article CAS Google Scholar
  24. Sen, A. & Suslick, K. S. Shape selective discrimination of small organic molecules. J. Am. Chem. Soc. (in the press).
  25. Adler, A. D. et al. A simplified synthesis for meso-tetraphenylporphin. J. Org. Chem. 32, 476 (1967).
    Article CAS Google Scholar
  26. Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 32, 2443–2445 (1970).
    Article CAS Google Scholar
  27. Barley, M., Becker, J. Y., Domazetis, G., Dolphin, D. & James, B. R. Synthesis and redox chemistry of octaethylporphyrin complexes of ruthenium(II) and ruthenium(III). Can. J. Chem. 61, 2389–2396 (1983).
    Article CAS Google Scholar
  28. Datta-Gupta, N. & Bardos, T. J. Synthetic porphyrins II: preparation and spectra of some metal chelates of para-substituted-meso-tetraphenylporphines. J. Pharm. Sci. 57, 300– 304 (1968).
    Article CAS Google Scholar
  29. Yaws, C. L. Handbook of Vapor Pressure (Gulf, Houston, 1994).
    Google Scholar

Download references

Acknowledgements

This work was supported by the US NIH and in part by the US DOD and DOE.

Author information

Authors and Affiliations

  1. Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, 61801, Illinois , USA
    Neal A. Rakow & Kenneth S. Suslick

Authors

  1. Neal A. Rakow
    You can also search for this author inPubMed Google Scholar
  2. Kenneth S. Suslick
    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toKenneth S. Suslick.

Supplementary information

Rights and permissions

About this article

Cite this article

Rakow, N., Suslick, K. A colorimetric sensor array for odour visualization.Nature 406, 710–713 (2000). https://doi.org/10.1038/35021028

Download citation

This article is cited by