A colorimetric sensor array for odour visualization (original) (raw)
- Letter
- Published: 17 August 2000
Nature volume 406, pages 710–713 (2000)Cite this article
- 11k Accesses
- 1259 Citations
- 15 Altmetric
- Metrics details
Abstract
Array-based vapour-sensing devices are used to detect and differentiate between chemically diverse analytes. These systems—based on cross-responsive sensor elements—aim to mimic the mammalian olfactory system1,2,3 by producing composite responses unique to each odorant. Previous work has concentrated on a variety of non-specific chemical interactions4,5,6,7,8,9,10,11 to detect non-coordinating organic vapours. But the most odiferous, toxic compounds often bind readily to metal ions. Here we report a simple optical chemical sensing method that utilizes the colour change induced in an array of metalloporphyrin dyes upon ligand binding while minimizing the need for extensive signal transduction hardware. The chemoselective response of a library of immobilized vapour-sensing metalloporphyrin dyes permits the visual identification of a wide range of ligating (alcohols, amines, ethers, phosphines, phosphites, thioethers and thiols) and even weakly ligating (arenes, halocarbons and ketones) vapours. Water vapour does not affect the performance of the device, which shows a good linear response to single analytes, and interpretable responses to analyte mixtures. Unique colour fingerprints can be obtained at analyte concentrations below 2 parts per million, and responses to below 100 parts per billion have been observed. We expect that this type of sensing array will be of practical importance for general-purpose vapour dosimeters and analyte-specific detectors (for insecticides, drugs or neurotoxins, for example).
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Dryer, L. & Berghard, A. Odorant receptors: a plethora of G-protein-coupled receptors. Trends Pharmacol. Sci. 20, 413–417 (1999).
Article CAS Google Scholar - Lancet, D. & Ben-Arie, N. Olfactory receptors. Curr. Biol. 3, 668–674 ( 1993).
Article CAS Google Scholar - Axel, R. The molecular logic of smell. Sci. Am. 273, 154–159 (1995).
Article CAS Google Scholar - Freund, M. S. & Lewis, N. S. A chemically diverse conducting polymer-based “electronic nose”. Proc. Natl Acad. Sci. USA 92, 2652–2656 ( 1995).
Article ADS CAS Google Scholar - Lonergan, M. C. et al. Array-based vapor sensing using chemically sensitive, carbon black-polymer resistors. Chem. Mater. 8, 2298–2312 (1996).
Article CAS Google Scholar - Walt, D. R. Fiber optic imaging sensors. Acc. Chem. Res. 31, 267–278 (1998).
Article CAS Google Scholar - Dickinson, T. A., White, J., Kauer, J. S. & Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 382, 697–700 (1996).
Article ADS CAS Google Scholar - Heilig, A. et al. Gas identification by modulating temperatures of SnO2-based thick film resistors. Sens. Actuators B 43, 45–51 (1997).
Article CAS Google Scholar - Gardner, J. W., Shurmer, H. V. & Tan, T. T. Application of an electronic nose to the discrimination of coffees. Sens. Actuators B 6, 71– 75 (1992).
Article CAS Google Scholar - Crooks, R. M. & Ricco, A. J. New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998).
Article CAS Google Scholar - Grate, J. W. & Abraham, M. H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuators B 3, 85– 111 (1991).
Article CAS Google Scholar - Gelperin, A., Flores, J. & Raccuia-Behling, F. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk. J. Neurophysiol. 83, 116–127 ( 2000).
Article CAS Google Scholar - Baron, A. E., Danielson, J. D. S., Gouterman, M., Wan, J. R. & Callis, J. B. Submillisecond response times of oxygen-quenched luninescent coatings. Rev. Sci. Instrum. 64, 3394–3402 (1993).
Article ADS CAS Google Scholar - Lee, W. et al. Halogenated platinum porphyrins as sensing materials for luminescence-based oxygen sensors. J. Mater. Chem. 3, 1031– 1035 (1993).
Article CAS Google Scholar - Vaughan, A. A., Baron, M. G. & Narayanaswamy, R. Optical ammonia sensing films based on an immobilized metalloporphyrin. Anal. Commun. 33, 393– 396 (1996).
Article CAS Google Scholar - Brunink, J. A. J. et al. The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors. Anal. Chim. Acta 325, 53–64 (1996).
Article CAS Google Scholar - Di Natale, C. et al. The exploitation of metalloporphyrins as chemically interactive material in chemical sensors. Mater. Sci. Eng. C 5, 209–215 (1998).
Article Google Scholar - Blauer, G. & Sund, H. (eds) Optical Properties and Structure of Tetrapyrroles (de Gruyter, Berlin, 1985).
Google Scholar - Nappa, M. & Valentine, J. S. The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc. J. Am. Chem. Soc. 100, 5075– 5080 (1978).
Article CAS Google Scholar - Suslick, K. S. & Van Deusen-Jeffries, S. in Comprehensive Supramolecular Chemistry (ed. Lehn, J. M.) 141– 170 (Elsevier, Oxford, 1996).
Google Scholar - Bhyrappa, P., Young, J. K., Moore, J. S. & Suslick, K. S. Dendrimer porphyrins: synthesis and catalysis. J. Am. Chem. Soc. 118, 5708–5711 ( 1996).
Article CAS Google Scholar - Chou, J.-H., Nalwa, H. S., Kosal, M. E., Rakow, N. A. & Suslick, K. S. in The Porphyrin Handbook (eds Kadish, K., Smith, K. & Guilard, R.) 43–132 (Academic, New York, 2000).
Google Scholar - Bhyrappa, P., Vaijayanthimala, G. & Suslick, K. S. Shape-selective ligation to dendrimer-metalloporphyrins. J. Am. Chem. Soc. 121, 262– 263 (1999).
Article CAS Google Scholar - Sen, A. & Suslick, K. S. Shape selective discrimination of small organic molecules. J. Am. Chem. Soc. (in the press).
- Adler, A. D. et al. A simplified synthesis for meso-tetraphenylporphin. J. Org. Chem. 32, 476 (1967).
Article CAS Google Scholar - Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 32, 2443–2445 (1970).
Article CAS Google Scholar - Barley, M., Becker, J. Y., Domazetis, G., Dolphin, D. & James, B. R. Synthesis and redox chemistry of octaethylporphyrin complexes of ruthenium(II) and ruthenium(III). Can. J. Chem. 61, 2389–2396 (1983).
Article CAS Google Scholar - Datta-Gupta, N. & Bardos, T. J. Synthetic porphyrins II: preparation and spectra of some metal chelates of para-substituted-meso-tetraphenylporphines. J. Pharm. Sci. 57, 300– 304 (1968).
Article CAS Google Scholar - Yaws, C. L. Handbook of Vapor Pressure (Gulf, Houston, 1994).
Google Scholar
Acknowledgements
This work was supported by the US NIH and in part by the US DOD and DOE.
Author information
Authors and Affiliations
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, 61801, Illinois , USA
Neal A. Rakow & Kenneth S. Suslick
Authors
- Neal A. Rakow
You can also search for this author inPubMed Google Scholar - Kenneth S. Suslick
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKenneth S. Suslick.
Supplementary information
Rights and permissions
About this article
Cite this article
Rakow, N., Suslick, K. A colorimetric sensor array for odour visualization.Nature 406, 710–713 (2000). https://doi.org/10.1038/35021028
- Received: 25 November 1999
- Accepted: 25 May 2000
- Published: 17 August 2000
- Issue Date: 17 August 2000
- DOI: https://doi.org/10.1038/35021028