Bradley, D. E. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol.26, 146– 154 (1980). ArticleCASPubMed Google Scholar
Wolfgang, M., Park, H. S., Hayes, S. F., van Putten, J. P. M. & Koomey, M. Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA95, 14973– 14978 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Sheetz, M. P. (ed.) Laser Tweezers in Cell Biology (Academic, New York, 1997). Google Scholar
Swanson, J. Studies on gonococcus infection. XII. Colony color and opacity variants of gonococci. Infect. Immun.19, 320– 331 (1978). CASPubMedPubMed Central Google Scholar
O'Toole, G. A. & Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol.30, 295–304 (1998). ArticleCASPubMed Google Scholar
Bieber, D. et al. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science280 , 2114–2118 (1998). ArticleADSCASPubMed Google Scholar
Comolli, J. C. et al. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun.67, 3625– 3630 (1999). CASPubMedPubMed Central Google Scholar
Pujol, C., Eugene, E., Marceau, M. & Nassif, X. The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proc. Natl Acad. Sci. USA96, 4017–4022 ( 1999). ArticleADSCASPubMedPubMed Central Google Scholar
Merz, A. J., Enns, C. A. & So, M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol. Microbiol.32, 1316–1332 (1999). ArticleCASPubMed Google Scholar
Seifert, H. S., Ajioka, R. S., Marchal, C., Sparling, P. F. & So, M. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature336 , 392–395 (1988). ArticleADSCASPubMed Google Scholar
Yoshida, T., Kim, S. R. & Komano, T. Twelve pil genes are required for biogenesis of the R64 thin pilus. J. Bacteriol.181, 2038–2043 (1999). CASPubMedPubMed Central Google Scholar
Bradley, D. E. Evidence for the retraction of Pseudomonas aeruginosa RNA phage pili. Biochem. Biophys. Res. Commun.47, 142– 149 (1972). ArticleCASPubMed Google Scholar
Karaolis, D. K., Somara, S., Maneval, D. R. Jr, Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature399, 375– 379 (1999). ArticleADSCASPubMed Google Scholar
Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature378, 32– 38 (1995). ADSCASPubMed Google Scholar
Forest, K. T. & Tainer, J. A. Type-4 pilus structure: outside to inside and top to bottom—a minireview. Gene192, 165–169 (1997). ArticleCASPubMed Google Scholar
Whitchurch, C. B., Hobbs, M., Livingston, S. P., Krishnapillai, V. & Mattick, J. S. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene101, 33–44 (1991). ArticleCASPubMed Google Scholar
Wolfgang, M. et al. pilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol.29, 321 –330 (1998). ArticleCASPubMed Google Scholar
Brossay, L., Paradis, G., Fox, R., Koomey, M. & Hebert, J. Identification, localization, and distribution of the PilT protein in Neisseria gonorrhoeae. Infect. Immun.62, 2302–2308 (1994). CASPubMedPubMed Central Google Scholar
Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA97, 3067–3072 (2000). ArticleADSCASPubMedPubMed Central Google Scholar
Ginocchio, C. C., Olmsted, S. B., Wells, C. L. & Galan, J. E. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell76, 717–724 (1994). ArticleCASPubMed Google Scholar
Evans, E., Berk, D. & Leung, A. Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys. J.59, 838– 848 (1991). ArticleADSCASPubMedPubMed Central Google Scholar
Shao, J. Y., Ting-Beall, H. P. & Hochmuth, R. M. Static and dynamic lengths of neutrophil microvilli. Proc. Natl Acad. Sci. USA95, 6797– 6802 (1998). ArticleADSCASPubMedPubMed Central Google Scholar
Coppin, C. M., Finer, J. T., Spudich, J. A. & Vale, R. D. Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy. Proc. Natl Acad. Sci. USA93, 1913–1917 (1996). ArticleADSCASPubMedPubMed Central Google Scholar
Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science288, 95– 100 (2000). ArticleADSCASPubMed Google Scholar
Dupuy, B., Taha, M. K., Pugsley, A. P. & Marchal, C. Neisseria gonorrhoeae prepilin export studied in Escherichia coli. J. Bacteriol.173, 7589– 7598 (1991). ArticleCASPubMedPubMed Central Google Scholar
Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R. & Sheetz, M. P. Selective regulation of integrin-cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biol.1, 200–206 (1999). ArticleCASPubMed Google Scholar