RNA polymerase II elongation through chromatin (original) (raw)

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryotic chromosome. Cell 98, 285–294 ( 1999).
    CAS PubMed Google Scholar
  2. van Holde, K. E. Chromatin (Springer, New York, 1989).
    Book Google Scholar
  3. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657– 2683 (1996).
    Article CAS PubMed Google Scholar
  4. Gross, D. S. & Garrard, W. T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159 –157 (1988).
    Article CAS PubMed Google Scholar
  5. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 ( 1998).
    Article CAS PubMed Google Scholar
  6. Hebbes, T. R., Clayton, A. L., Thorne, A. W. & Crane-Robinson, C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 13, 1823–1830 (1994).
    Article CAS PubMed PubMed Central Google Scholar
  7. Kuo, M.-H. & Allis, C. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20, 615–626 (1998).
    Article CAS PubMed Google Scholar
  8. Kingston, R. E. & Narlikar, G. J. ATP-dependent remodelling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).
    Article CAS PubMed Google Scholar
  9. Lorch, Y., Zhang, M. & Kornberg, R. D. Histone octamer transfer by a chromatin-remodelling complex. Cell 96, 389–392 (1999).
    Article CAS PubMed Google Scholar
  10. Owen-Hughes, T. & Workman, J. L. Experimental analysis of chromatin function in transcription control. Crit. Rev. Euk. Gene Exp. 4, 403–441 (1994).
    CAS Google Scholar
  11. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 ( 1987).
    Article CAS PubMed Google Scholar
  12. Clark, D. J. & Felsenfeld, G. A nucleosome core is transferred out of the path of a transcribing polymerase. Cell 71, 11–22 (1992).
    Article CAS PubMed Google Scholar
  13. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76, 371 –382 (1994).
    Article CAS PubMed Google Scholar
  14. Studitsky, V. M., Clark, D. J. & Felsenfeld, G. Overcoming a nucleosomal barrier to transcription. Cell 83, 19–27 ( 1995).
    Article CAS PubMed Google Scholar
  15. Nacheva, G. A. et al. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58, 27– 36 (1989).
    Article CAS PubMed Google Scholar
  16. O'Neill, T. E., Roberge, M. & Bradbury, E. M. Nucleosome arrays inhibit both initiation and elongation of transcripts by bacteriophage T7 RNA polymerase. J. Mol. Biol. 223, 67–78 ( 1992).
    Article CAS PubMed Google Scholar
  17. Studitsky, V. M., Kassavetis, G. A., Geiduschek, E. P. & Felsenfeld, G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278, 1960–1963 (1997).
    Article ADS CAS PubMed Google Scholar
  18. Izban, M. G. & Luse, D. S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5, 683–696 (1991).
    Article CAS PubMed Google Scholar
  19. Orphanides, G., LeRoy, G., Chang, C. -H., Luse, D. S. & Reinberg, D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105– 116 (1998).
    Article CAS PubMed Google Scholar
  20. Izban, M. J. & Luse, D. S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267, 13647–13655 (1992).
    CAS PubMed Google Scholar
  21. Brown, S. A., Imbalzano, A. N. & Kingston, R. E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10, 1479–1490 (1996).
    Article CAS PubMed Google Scholar
  22. Bustin, M. & Reeves, R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acid Res. Mol. Biol. 54, 35– 100 (1996).
    Article CAS PubMed Google Scholar
  23. Ding, H. F., Rimsky, S., Batson, S. C., Bustin, M. & Hansen, U. Stimulation of RNA polymerase II elongation by chromosomal protein HMG-14. Science 265 , 796–799 (1994).
    Article ADS CAS PubMed Google Scholar
  24. Rowley, A., Singer, R. A. & Johnston, G. C. CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol. Cell. Biol. 11, 5718– 5726 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  25. Malone, E. A., Clarke, C. D., Chiang, A. & Winston, F. Mutations in SPT16/CDC68 suppress _cis_- and _trans_-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 5710–5717 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  26. Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M. & Reinberg, D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).
    Article ADS CAS PubMed Google Scholar
  27. Santisteban, M. S., Arents, G., Moudrianakis, E. N. & Smith, M. M. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16, 2493–2506 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  28. Baer, B. W. & Rhodes, D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301, 482–488 (1983).
    Article ADS CAS PubMed Google Scholar
  29. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  30. Winston, F. & Carlson, M. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8, 387–391 (1992).
    Article CAS PubMed Google Scholar
  31. Wada, T. et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  32. Bortvin, A. & Winston, F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272, 1473–1476 (1996).
    Article ADS CAS PubMed Google Scholar
  33. Travers, A. Chromatin modification by DNA tracking. Proc. Natl Acad. Sci. USA 96, 13634–13637 ( 1999).
    Article ADS CAS PubMed PubMed Central Google Scholar
  34. Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H. & Nakatani, Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382, 319–324 (1996).
    Article ADS CAS PubMed Google Scholar
  35. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  36. Otero, G. et al. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3, 109–118 (1999).
    Article CAS PubMed Google Scholar
  37. Wittschieben, B. O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).
    Article CAS PubMed Google Scholar
  38. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41– 45 (2000).
    Article ADS CAS PubMed Google Scholar
  39. Walia, H., Chen, H. Y., Sun, J. M., Holth, L. T. & Davie, J. R. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J. Biol. Chem. 273, 14516–14522 ( 1998).
    Article CAS PubMed Google Scholar
  40. O'Brien, T. & Lis, J. T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13, 3456–3463 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  41. Lee, D. & Lis, J. T. Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 393, 389–392 ( 1998).
    Article ADS CAS PubMed Google Scholar
  42. McNeil, J. B., Agah, H. & Bentley, D. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev. 12, 2510–2521 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  43. Fraser, P. & Grosveld, F. Locus control regions, chromatin activation and transcription. Curr. Opin. Cell Biol. 10, 361–365 (1998).
    Article CAS PubMed Google Scholar
  44. Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. & Proudfoot, N. J. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494–2509 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  45. Gribnau, J., Diderich, K., Pruzina, S., Calzolari, R. & Fraser, P. Intergenic transcription and developmental remodelling of chromatin subdomains in the human β-globin locus. Mol. Cell 5, 377–386 (2000).
    Article CAS PubMed Google Scholar
  46. Bender, M. A., Bulger, M., Close, J. & Groudine, M. β-globin switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell 5, 387–393 (2000).
    Article CAS PubMed Google Scholar
  47. Kuo, M. -H., Zhou, J., Jambeck, P., Churchill, M. E. A. & Allis, C. D. Histone acetyltransferase activity of yeast Gcn5p is required for activation of target genes in vivo. Genes Dev. 12, 627–639 ( 1998).
    Article CAS PubMed PubMed Central Google Scholar
  48. Felsenfeld, G., Boyes, J., Chung, J., Clark, D. & Studitsky, V. Chromatin structure and gene expression. Proc. Natl Acad. Sci. USA 93, 9384– 9388 (1996).
    Article ADS CAS PubMed PubMed Central Google Scholar
  49. Roeder, R. G. The role of the general initiation factors in transcription by RNA polymerase II. Trends Biochem. Sci. 21, 327– 335 (1996).
    Article CAS PubMed Google Scholar
  50. Uptain, S. M., Kane, C. M. & Chamberlin, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117– 172 (1997).
    Article CAS PubMed Google Scholar
  51. Neugebauer, K. M. & Roth, M. B. Transcription units as RNA processing units. Genes Dev. 11, 3279–3285 (1997).
    Article CAS PubMed Google Scholar
  52. Koleske, A. J. & Young, R. A. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20, 113–116 (1995).
    Article CAS PubMed Google Scholar

Download references