Nadeau, J. H. & Sankoff, D. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics147, 1259–1266 (1997). CASPubMedPubMed Central Google Scholar
Hall, B. G., Yokoyama, S. & Calhoun, D. H. Role of cryptic genes in microbial evolution. Mol. Biol. Evol.1, 109–124 (1983). CASPubMed Google Scholar
Cox, B. [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity20, 505–521 ( 1965). Google Scholar
Liebman, S. W. & Sherman, F. Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J. Bact.139 , 1068–1071 (1979). CASPubMed Google Scholar
Firoozan, M., Grant, C. M., Duarte, J. A. & Tuite, M. F. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast7, 173– 183 (1991). CASPubMed Google Scholar
Serio, T. R. & Lindquist, S. L. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol.15, 661–703 ( 1999). CASPubMed Google Scholar
Stansfield, I. et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomycescerevisiae. EMBO J.14, 4365–4373 (1995). CASPubMedPubMed Central Google Scholar
Zhouravleva, G. et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J.14, 4065–4072 ( 1995). CASPubMedPubMed Central Google Scholar
Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science273, 622– 626 (1996). ADSCASPubMed Google Scholar
Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J.15, 3127–3134 ( 1996). CASPubMedPubMed Central Google Scholar
Kikuchi, Y. & Kikuchi, A. in Gene Expression and Regulation: the Legacy of Luigi Gorini (eds Bissell, M., Deho, G., Sironi, G. & Torriani, A.) 257–264 (Elsevier, Amsterdam, 1988). Google Scholar
Kushnirov, V. V. et al. Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene66, 45– 54 (1988). CASPubMed Google Scholar
Wilson, P. G. & Culbertson, M. R. SUF12 suppressor protein of yeast. A fusion protein related to the EF-1 family of elongation factors. J. Mol. Biol.199, 559– 573 (1988). CASPubMed Google Scholar
Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae . Genetics137, 671– 676 (1994). CASPubMedPubMed Central Google Scholar
Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature400, 573–576 ( 1999). ADSCASPubMed Google Scholar
Kushnirov, V. V. et al. Divergence and conservation of SUP2 (SUP35) gene of yeast Pichia pinus and Saccharomycescerevisiae. Yeast6, 461–472 ( 1990). CASPubMed Google Scholar
Chernoff, Y. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol.35, 865–876 (2000). CASPubMed Google Scholar
Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell100, 277–288 (2000). CASPubMed Google Scholar
Kushnirov, V. V., Kochneva-Pervukhova, N. V., Chechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J.19, 324–331 ( 2000). CASPubMedPubMed Central Google Scholar
Tuite, M. F., Mundy, C. R. & Cox, B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics98, 691–711 ( 1981). CASPubMedPubMed Central Google Scholar
Adams, A., Gottschling, D. E., Kaiser, C. A., Stearns, T. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Plainview, 1997). Google Scholar
Hampsey, M. A review of phenotypes in Saccharomyces cerevisiae. Yeast13, 1099–1133 ( 1997). CASPubMed Google Scholar
Rieger, K. J. et al. Large-scale phenotypic analysis—the pilot project on yeast chromosome III. Yeast13, 1547– 1562 (1997). CASPubMed Google Scholar
Budavari, S. (ed.) The Merck Index (Merck and Company, Rahway, New Jersey, 1989). Google Scholar
Roncero, C., Valdivieso, M. H., Ribas, J. C. & Duran, A. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to Calcofluor white. J. Bacteriol.170, 1950–1954 (1988). CASPubMedPubMed Central Google Scholar
Lund, P. M. & Cox, B. S. Reversion analysis of [psi-] mutations in Saccharomyces cerevisiae. Genet. Res.37, 173–182 (1981). CASPubMed Google Scholar
Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics147, 507–519 ( 1997). CASPubMedPubMed Central Google Scholar
Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J.18, 1974– 1981 (1999). CASPubMedPubMed Central Google Scholar
Grant, C. M., Firoozan, M. & Tuite, M. F. Mistranslation induces the heat-shock response in the yeast Saccharomyces cerevisiae. Mol. Microbiol.3, 215–220 (1989). CASPubMed Google Scholar
Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet.27, 437–496 (1993). CASPubMed Google Scholar
Bailleul, P. A., Newnam, G. P., Steenbergen, J. N. & Chernoff, Y. O. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor sup35 (eRF3) in Saccharomyces cerevisiae. Genetics153, 81– 94 (1999). CASPubMedPubMed Central Google Scholar
Tikhomirova, V. L. & Inge-Vechtomov, S. G. Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl. Curr. Genet.30, 44–49 (1996). CASPubMed Google Scholar
Liebman, S. W. & Derkatch, I. L. The yeast [PSI+] prion: making sense of nonsense. J. Biol. Chem.274, 1181–1184 (1999). CASPubMed Google Scholar
Seoighe, C. & Wolfe, K. H. Updated map of duplicated regions in the yeast genome. Gene238, 253– 261 (1999). CASPubMed Google Scholar
Olson, M. V. When less is more: gene loss as an engine of evolutionary change. Am. J. Hum. Genet.64, 18–23 (1999). CASPubMedPubMed Central Google Scholar
Levitt, R. C. Polymorphisms in the transcribed 3′ untranslated region of eukaryotic genes. Genomics11, 484– 489 (1991). CASPubMed Google Scholar
Czaplinski, K. et al. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev.12, 1665–1677 ( 1998). CASPubMedPubMed Central Google Scholar
Mewes, H. W. et al. Overview of the yeast genome. Nature387, 7–65 (1997). PubMed Google Scholar
Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature396, 336–342 (1998). ADSCASPubMed Google Scholar
Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science268, 880–884 (1995). ADSCASPubMed Google Scholar
Chernoff, Y. O. et al. Conservative system for dosage-dependent modulation of translational fidelity in eukaryotes. Biochimie74, 455 –461 (1992). CASPubMed Google Scholar
Zhou, P. et al. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion- like form of release factor eRF3. EMBO J.18, 1182–1191 (1999). CASPubMedPubMed Central Google Scholar
Eustice, D. C., Wakem, L. P., Wilhelm, J. M. & Sherman, F. Altered 40S ribosomal subunits in omnipotent suppressors of yeast. J. Mol. Biol.188, 207–214 (1986). CASPubMed Google Scholar
Wakem, L. P. & Sherman, F. Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics124, 515–522 ( 1990). CASPubMedPubMed Central Google Scholar
Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol.7, 683– 692 (1993). CASPubMed Google Scholar