Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins (original) (raw)
References
Norton, J. D., Deed, R. W., Craggs, G. & Sablitzky, F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol.8, 58–65 (1998 ). CASPubMed Google Scholar
Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol.20, 429–440 (2000). ArticleCAS Google Scholar
Iavarone, A., Garg, P., Lasorella, A., Hsu, J. & Israel, M. A. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev.8, 1270–1284 (1994). ArticleCAS Google Scholar
Lasorella, A., Iavarone, A. & Israel, M. A. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol.16, 2570–2578 (1996). ArticleCAS Google Scholar
Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature359, 328–330 (1992). ArticleADSCAS Google Scholar
Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature359, 295–300 (1992). ArticleADSCAS Google Scholar
Lee, E. Y. -H. P. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and hematopoesis. Nature359, 288– 294 (1992). ArticleADSCAS Google Scholar
Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev.10, 3051–3064 (1996). ArticleCAS Google Scholar
Lee, E. Y. et al. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev.8, 2008–2021 (1994). ArticleCAS Google Scholar
Jen, Y., Manova, K. & Benezra, R. Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn.208, 92–106 ( 1997). ArticleCAS Google Scholar
Neuman, T. et al. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev. Biol.160, 186– 195 (1993). ArticleCAS Google Scholar
Zhu, W. et al. Id gene expression during development and molecular cloning of the human Id-1 gene. Brain Res. Mol. Brain Res.30, 312–326 (1995). ArticleCAS Google Scholar
Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell81, 323–330 (1995). ArticleCAS Google Scholar
Martinsen, B. J. & Bronner-Fraser, M. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science281, 988–991 ( 1998). ArticleADSCAS Google Scholar
Maris, J. M. & Matthay, K. K. Molecular biology of neuroblastoma. J. Clin. Oncol.17, 2264– 2279 (1999). ArticleCAS Google Scholar
Easton, J., Wei, T., Lahti, J. M. & Kidd, V. J. Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res.58, 2624–2632 (1998). CASPubMed Google Scholar
Beltinger, C. P., White, P. S., Sulman, E. P., Maris, J. M. & Brodeur, G. M. No CDKN2 mutations in neuroblastomas. Cancer Res.55, 2053-2055 ( 1995). Google Scholar
Diccianni, M. B., Chau, L. S., Batova, A., Vu, T. Q. & Yu, A. L. The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance. Cancer Lett.104, 183–192 (1996). ArticleCAS Google Scholar
Diccianni, M. B. et al. Frequent deregulation of p16 and the p16/G1 cell cycle-regulatory pathway in neuroblastoma. Int. J. Cancer80, 145–154 (1999). ArticleCAS Google Scholar
Castresana, J. S., Gomez, L., Garcia-Miguel, P., Queizan, A. & Pestana, A. Mutational analysis of the p16 gene in human neuroblastomas. Mol. Carcinog.18, 129–133 (1997). ArticleCAS Google Scholar
Kawamata, N., Seriu, T., Koeffler, H. P. & Bartram, C. R. Molecular analysis of the cyclin-dependent kinase inhibitor family: p16(CDKN2/MTS1/INK4A), p18(INK4C) and p27(Kip1) genes in neuroblastomas. Cancer77, 570–575 (1996). ArticleCAS Google Scholar
Fan, X., Gomez, L., Nistal, M., Sierrasesumaga, L. & Castresana, J. S. Lack of gene amplification as a mechanism of CDK4 activation in human neuroblastoma. Oncol. Rep.6, 647–650 (1999). CASPubMed Google Scholar
Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J.16, 5322–5333 (1997). ArticleCAS Google Scholar
Goodrich, D. W. & Lee, W. H. Abrogation by c-Myc of G1 phase arrest induced by RB protein but not by p53 [published erratum: Nature360, 491 ( 1992)]. Nature360, 177– 179 (1992). ArticleADSCAS Google Scholar
Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Front Biosci.3, D250–268 (1998). ArticleCAS Google Scholar
Slack, R. S., El-Bizri, H., Wong, J., Belliveau, D. J. & Miller, F. D. A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J. Cell Biol.140, 1497–1509 (1998). ArticleCAS Google Scholar
Iavarone, A. & Massague, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature387, 417– 422 (1997). ArticleADSCAS Google Scholar
Pietenpol, J. A. et al. TGF-β1 Inhibition of c-Myc transcription and growth in keratinocytes is abrogated by viral transforming protein with pRB binding domeins. Cell61, 777–785 (1990). ArticleCAS Google Scholar
Neuman, K., Nornes, H. O. & Neuman, T. Helix-loop-helix transcription factors regulate Id2 gene promoter activity. FEBS Lett.374, 279–283 (1995). ArticleCAS Google Scholar
Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA-binding mechanism. Proc. Natl Acad. Sci. USA95, 13887–13892 (1998). ArticleADSCAS Google Scholar
Morrow, M. A., Mayer, E. W., Perez, C. A., Adlam, M. & Siu, G. Overexpression of the Helix-Loop-Helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol.36, 491–503 ( 1999). ArticleCAS Google Scholar
Florio, M. et al. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol. Cell. Biol.18, 5435–5444 ( 1998). ArticleCAS Google Scholar
Cooper, C. L., Brady, G., Bilia, F., Iscove, N. N. & Quesenberry, P. J. Expression of the Id family helix-loop-helix regulators during growth and development in the hematopoietic system. Blood89, 3155–3165 ( 1997). CASPubMed Google Scholar
Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell2, 293–304 ( 1998). ArticleCAS Google Scholar
Jen, Y., Manova, K. & Benezra, R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev. Dyn.207, 235–252 ( 1996). ArticleCAS Google Scholar
Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature397, 702–706 (1999). ArticleADSCAS Google Scholar
Lufkin, T. et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature359 , 835–841 (1992). ArticleADSCAS Google Scholar
Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397, 164–168 ( 1999). ArticleADSCAS Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 ( 1997). ArticleCAS Google Scholar
Iavarone, A. & Massague, J. E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol.19, 916– 922 (1999). ArticleCAS Google Scholar