Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins (original) (raw)

References

  1. Norton, J. D., Deed, R. W., Craggs, G. & Sablitzky, F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65 (1998 ).
    CAS PubMed Google Scholar
  2. Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).
    Article CAS Google Scholar
  3. Iavarone, A., Garg, P., Lasorella, A., Hsu, J. & Israel, M. A. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8, 1270–1284 (1994).
    Article CAS Google Scholar
  4. Lasorella, A., Iavarone, A. & Israel, M. A. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol. 16, 2570–2578 (1996).
    Article CAS Google Scholar
  5. Clarke, A. R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).
    Article ADS CAS Google Scholar
  6. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).
    Article ADS CAS Google Scholar
  7. Lee, E. Y. -H. P. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and hematopoesis. Nature 359, 288– 294 (1992).
    Article ADS CAS Google Scholar
  8. Zacksenhaus, E. et al. pRb controls proliferation, differentiation, and death of skeletal muscle cells and other lineages during embryogenesis. Genes Dev. 10, 3051–3064 (1996).
    Article CAS Google Scholar
  9. Lee, E. Y. et al. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8, 2008–2021 (1994).
    Article CAS Google Scholar
  10. Jen, Y., Manova, K. & Benezra, R. Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92–106 ( 1997).
    Article CAS Google Scholar
  11. Neuman, T. et al. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev. Biol. 160, 186– 195 (1993).
    Article CAS Google Scholar
  12. Zhu, W. et al. Id gene expression during development and molecular cloning of the human Id-1 gene. Brain Res. Mol. Brain Res. 30, 312–326 (1995).
    Article CAS Google Scholar
  13. Sherr, C. J. Cancer cell cycles. Science 274, 1672– 1677 (1996).
    Article ADS CAS Google Scholar
  14. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).
    Article CAS Google Scholar
  15. Martinsen, B. J. & Bronner-Fraser, M. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281, 988–991 ( 1998).
    Article ADS CAS Google Scholar
  16. Maris, J. M. & Matthay, K. K. Molecular biology of neuroblastoma. J. Clin. Oncol. 17, 2264– 2279 (1999).
    Article CAS Google Scholar
  17. Easton, J., Wei, T., Lahti, J. M. & Kidd, V. J. Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res. 58, 2624–2632 (1998).
    CAS PubMed Google Scholar
  18. Beltinger, C. P., White, P. S., Sulman, E. P., Maris, J. M. & Brodeur, G. M. No CDKN2 mutations in neuroblastomas. Cancer Res. 55, 2053-2055 ( 1995).
    Google Scholar
  19. Diccianni, M. B., Chau, L. S., Batova, A., Vu, T. Q. & Yu, A. L. The p16 and p18 tumor suppressor genes in neuroblastoma: implications for drug resistance. Cancer Lett. 104, 183–192 (1996).
    Article CAS Google Scholar
  20. Diccianni, M. B. et al. Frequent deregulation of p16 and the p16/G1 cell cycle-regulatory pathway in neuroblastoma. Int. J. Cancer 80, 145–154 (1999).
    Article CAS Google Scholar
  21. Castresana, J. S., Gomez, L., Garcia-Miguel, P., Queizan, A. & Pestana, A. Mutational analysis of the p16 gene in human neuroblastomas. Mol. Carcinog. 18, 129–133 (1997).
    Article CAS Google Scholar
  22. Kawamata, N., Seriu, T., Koeffler, H. P. & Bartram, C. R. Molecular analysis of the cyclin-dependent kinase inhibitor family: p16(CDKN2/MTS1/INK4A), p18(INK4C) and p27(Kip1) genes in neuroblastomas. Cancer 77, 570–575 (1996).
    Article CAS Google Scholar
  23. Fan, X., Gomez, L., Nistal, M., Sierrasesumaga, L. & Castresana, J. S. Lack of gene amplification as a mechanism of CDK4 activation in human neuroblastoma. Oncol. Rep. 6, 647–650 (1999).
    CAS PubMed Google Scholar
  24. Alevizopoulos, K., Vlach, J., Hennecke, S. & Amati, B. Cyclin E and c-Myc promote cell proliferation in the presence of p16INK4a and of hypophosphorylated retinoblastoma family proteins. EMBO J. 16, 5322–5333 (1997).
    Article CAS Google Scholar
  25. Goodrich, D. W. & Lee, W. H. Abrogation by c-Myc of G1 phase arrest induced by RB protein but not by p53 [published erratum: Nature 360, 491 ( 1992)]. Nature 360, 177– 179 (1992).
    Article ADS CAS Google Scholar
  26. Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Front Biosci. 3, D250–268 (1998).
    Article CAS Google Scholar
  27. Slack, R. S., El-Bizri, H., Wong, J., Belliveau, D. J. & Miller, F. D. A critical temporal requirement for the retinoblastoma protein family during neuronal determination. J. Cell Biol. 140, 1497–1509 (1998).
    Article CAS Google Scholar
  28. Iavarone, A. & Massague, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature 387, 417– 422 (1997).
    Article ADS CAS Google Scholar
  29. Pietenpol, J. A. et al. TGF-β1 Inhibition of c-Myc transcription and growth in keratinocytes is abrogated by viral transforming protein with pRB binding domeins. Cell 61, 777–785 (1990).
    Article CAS Google Scholar
  30. Neuman, K., Nornes, H. O. & Neuman, T. Helix-loop-helix transcription factors regulate Id2 gene promoter activity. FEBS Lett. 374, 279–283 (1995).
    Article CAS Google Scholar
  31. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNA-binding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998).
    Article ADS CAS Google Scholar
  32. Morrow, M. A., Mayer, E. W., Perez, C. A., Adlam, M. & Siu, G. Overexpression of the Helix-Loop-Helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36, 491–503 ( 1999).
    Article CAS Google Scholar
  33. Florio, M. et al. Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol. Cell. Biol. 18, 5435–5444 ( 1998).
    Article CAS Google Scholar
  34. Cooper, C. L., Brady, G., Bilia, F., Iscove, N. N. & Quesenberry, P. J. Expression of the Id family helix-loop-helix regulators during growth and development in the hematopoietic system. Blood 89, 3155–3165 ( 1997).
    CAS PubMed Google Scholar
  35. Tsai, K. Y. et al. Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304 ( 1998).
    Article CAS Google Scholar
  36. Jen, Y., Manova, K. & Benezra, R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev. Dyn. 207, 235–252 ( 1996).
    Article CAS Google Scholar
  37. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).
    Article ADS CAS Google Scholar
  38. Lufkin, T. et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359 , 835–841 (1992).
    Article ADS CAS Google Scholar
  39. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 ( 1999).
    Article ADS CAS Google Scholar
  40. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).
    Article CAS Google Scholar
  41. Iavarone, A. & Massague, J. E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol. 19, 916– 922 (1999).
    Article CAS Google Scholar

Download references