Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal (original) (raw)
References
Grant, W. D., Gemmell, R. T. & McGenity, T. J. Halobacteria: the evidence for longevity. Extremophiles2, 279–287 (1998). ArticleCASPubMed Google Scholar
Cano, R. J. & Borucki, M. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science268, 1060–1064 (1995). ADSCASPubMed Google Scholar
Denner, E. B. M. et al. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol.44, 774–780 (1994). Article Google Scholar
Huval, J. H. & Vreeland, R. H. in General and Applied Aspects of Halophilic Bacteria. Vol. 201 (ed. Rodriguez-Valera, F.) 53–62 (Plenum, New York, 1991). Google Scholar
Norton, C. F., McGenity, T. J. & Grant, W. D. Archaeal halophiles (halobacteria) from two British salt mines. J. Gen. Microbiol.139, 1077 –1081 (1993). ArticleCAS Google Scholar
Greenblatt, C. L. et al. Diversity of microorganisms isolated from amber. Microb. Ecol.38, 58–68 (1999). ArticleCASPubMed Google Scholar
Lambert, L. H. et al. Staphylococcus succinus sp. nov., isolated from Dominican amber. Int. J. Syst. Bacteriol.48, 511– 518 (1998). ArticleCASPubMed Google Scholar
Vreeland, R. H. & Powers, D. W. in Microbiolology and Biogeochemistry of Hypersaline Environments (ed. Oren, A.) 53–74 (CRC, Boca Raton, Florida, 1999 ). Google Scholar
Vreeland, R. H. & Rosenzweig, W. D. in Enigmatic and Extreme Microorganisms. (ed. Seckbach, J.) 387– 398 (Kluwer, Delft, 1998). Google Scholar
Croft, J. S. Upper Permian conodonts and other microfossils from the Pinery and Lamar Limestone Members of the Bell Canyon Formation and from the Rustler Formation, west Texas. Thesis, Ohio State Univ. (1978).
Walter, J. C. Paleontology of the Rustler Formation, Culberson County, Texas. J. of Paleontol.27, 679–702 (1953). Google Scholar
Renne, P. R., Steiner, M. B., Sharp, W. D., Ludwig, K. R. & Fanning, C. M. 40/39 Ar and U/Pb SHRIMP dating of latest Permian tephras in the Midland Basin Texas. EOS77, 794 (1996). Google Scholar
Renne, P. R., Sharp, W. D. & Becker, T. A. 40Ar/39Ar dating of langbeinite [K2Mg2(SO4)3] in late Permian evaporites of the Salado Formation, Southeastern New Mexico, USA. Mineral. Mag.62A, 1253– 1254 (1998). ArticleADSCAS Google Scholar
Hardie, L. A., Lowenstein, T. K. & Spencer, R. J. The problem of distinguishing between primary and secondary features in evaporites. Sixth Int. Symp. On Salt1, 11–39 (1983). Google Scholar
Roedder, E. The fluids in salt. Amer. Mineral.69, 413 –439 (1984). CASMATH Google Scholar
Lowenstein, T. K. & Hardie, L. A. Criteria for recognition of salt-pan evaporites. Sedimentol.32, 627–644 (1985). ArticleADSCAS Google Scholar
Lowenstein, T. K. Origin of depositional cycles in a Permian “saline giant”: the Salado (McNutt zone) evaporites of New Mexico and Texas. Geol. Soc. Am. Bull.100, 592–608 (1988). ArticleADSCAS Google Scholar
Holt, R. M. & Powers, D. W. Geological mapping of the air intake shaft at the Waste Isolation Pilot Plant. Report no. DOE/WIPP 90-051, 1–90 (U. S. Department of Energy, Carlsbad NM, 1990).
Lowenstein, T. K. & Spencer, R. J. Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. Am. J. Science290, 1–42 (1990). ArticleADSCAS Google Scholar
Holt, R. M. & Powers, D. W. in Geological and Hydrological Studies of Evaporites in the Northern Delaware Basin for the Waste Isolation Pilot Plant (WIPP), New Mexico (eds Powers, D. W., Holt, R. M., Beauheim, R. L. & Rempe, N.). Geol. Soc. Am. Guidebook14, 45–78 (1990). Google Scholar
Powers, D. W. & Hassinger, B. W. Synsedimentary dissolution pits of halite of the Permian Salado Formation, southeastern New Mexico. J. Sed. Petrol.55, 769–773 (1985). Google Scholar
Onstott, T. C., Mueller, C., Mikulki, K., Vicenzi, E. & Powers, D. W. 40Ar/39Ar laser microprobe dating of polyhalite from bedded, late Permian evaporites. EOS76, S285 (1995). Google Scholar
Vreeland, R. H., Piselli, A. F., McDonnough, S. & Myer, S. S. Distribution and diversity of halophilic bacteria in a subsurface salt formation. Extremophiles2, 321–331 (1998). ArticleCASPubMed Google Scholar
Rosenzweig, W. D., Peterson, J., Woish, J. & Vreeland, R. H. Development of a protocol to retrieve microorganisms from ancient salt crystals. Geomicrobiol. (in the press).
Vreeland, R. H., Anderson, R. & Murray, R. G. E. Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. J. Bacteriol.160, 879–883 (1984). CASPubMedPubMed Central Google Scholar
Arahal, D. R, Marquez, M. C., Volcani, B. E., Schleifer, K. H. & Ventosa, A. Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int. J. Syst. Bacteriol.49, 521–530 ( 1999). ArticlePubMed Google Scholar
Heyndrickx, M. et al. Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int. J. Syst. Bacteriol.48, 99–106 (1998). Article Google Scholar
Garabito, M. J., Arahal, D. R., Mellado, E., Marquez, M. C. & Ventosa, A. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int. J. Syst. Bacteriol.47, 735–741 ( 1997). ArticleCASPubMed Google Scholar
Waino, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. Gracilibacillus gen nov., with description of Gracilibacillus halotolerans gen. nov. sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int. J. Syst. Bacteriol.49, 821–831 (1999). ArticleCASPubMed Google Scholar
Cournoyer, B. & Lavire, C. Analysis of Frankia evolutionary radiation using glnII sequences. FEMS Microbiol. Lett.177, 29–34 (1999). ArticleCASPubMed Google Scholar