Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation (original) (raw)
References
Molkentin, J. D., Black, B. L., Martin, J. F. & Olson, E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell83, 1125– 1136 (1995). ArticleCAS Google Scholar
Sparrow, D. B. et al. MEF-2 function is modified by a novel co-repressor, MITR. EMBO J.18, 5085–5098 (1999). ArticleCAS Google Scholar
Miska, E. A. et al. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J.18, 5099– 5107 (1999). ArticleCAS Google Scholar
Lu, J., McKinsey, T. A., Nicol, R. L. & Olson, E. N. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci. USA97, 4070–4075 (2000). ArticleADSCAS Google Scholar
Lu, J., McKinsey, T. A., Zhang, C. L. & Olson, E. N. Regulation of skeletal myogenesis by association of MEF2 with class II histone deacetylases. Mol. Cell6, 233– 244 (2000). ArticleCAS Google Scholar
Kuo, M. H. & Allis, C. D. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays20, 615–626 (1998). ArticleCAS Google Scholar
Han, J., Jiang, Y., Li, Z., Kravchenko, V. V. & Ulevitch, R. J. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature386, 296–299 (1997). ArticleADSCAS Google Scholar
Kato, Y. et al. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J.16, 7054–7066 (1997). ArticleCAS Google Scholar
Mao, Z. & Wiedmann, M. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem.274, 31102–31107 (1999). ArticleCAS Google Scholar
Wu, H. et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J.19, 1–11 (2000). Article Google Scholar
Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem.269, 6320–6324 (1994). CASPubMed Google Scholar
Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature390, 308 –311 (1997). ArticleADSCAS Google Scholar
Gorner, W. et al. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev.12, 586–597 ( 1998). ArticleCAS Google Scholar
Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science275, 1930–1934 (1997). ArticleCAS Google Scholar
Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell96, 857–868 (1999). ArticleCAS Google Scholar
Pinna, L. A. & Ruzzene, M. How do protein kinases recognize their substrates? Biochem. Biophys. Acta.1314, 191–225 (1996). ArticleCAS Google Scholar
Grozinger, C. M. & Schreiber, S. L. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl Acad. Sci. USA97 , 7835–7840 (2000). ArticleADSCAS Google Scholar
Sartorelli, V., Huang, J., Hamamori, Y. & Kedes, L. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol.17, 1010–1026 (1997). ArticleCAS Google Scholar
Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science274, 1678– 1683 (1996). ArticleADSCAS Google Scholar
Passier, R. et al. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J. Clin. Invest.105, 1395–1406 (2000). ArticleCAS Google Scholar
Black, B. L. & Olson, E. N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins.. Annu. Rev. Cell Dev. Biol.14, 167–196 (1998). ArticleCAS Google Scholar
Grozinger, C. M., Hassig, C. A. & Schreiber, S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc. Natl. Acad. Sci.96, 4868–4873 (1999). ArticleADSCAS Google Scholar
Haribabu, B. et al. Human calcium-calmodulin dependent protein kinase I: cDNA cloning, domain structure and activation by phosphorylation at threonine-177 by calcium-calmodulin dependent protein kinase I kinase. EMBO J.14, 3679–3686 ( 1995). ArticleCAS Google Scholar
Chatila, T., Anderson, K. A., Ho, N. & Means, A. R. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J. Biol. Chem.271, 21542– 21548 (1996). ArticleCAS Google Scholar
O'Keefe, S. J., Tamura, J., Kincaid, R. L., Tocci, M. J. & O'Neill, E. A. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature357, 692–694 (1992). ArticleADSCAS Google Scholar
Jiang, Y. et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J. Biol. Chem.271, 17920–17926 (1996). ArticleCAS Google Scholar
Rybkin, I. I., Cross, M. E., McReynolds, E. M., Lin, R. Z. & Ballou, L. M. alpha(1A) adrenergic receptor induces eukaryotic initiation factor 4E-binding protein 1 phosphorylation via a Ca(2+)-dependent pathway independent of phosphatidylinositol 3-kinase/Akt. J. Biol. Chem.275, 5460– 5465 (2000). ArticleCAS Google Scholar
English, J. M. et al. Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control. J. Biol. Chem.274, 31588–31592 (1999). ArticleCAS Google Scholar
Stambolic, V. & Woodgett, J. R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem. J.303, 701–704 (1994). ArticleCAS Google Scholar
Mellon, P. L., Clegg, C. H., Correll, L. A. & McKnight, G. S. Regulation of transcription by cyclic AMP-dependent protein kinase. Proc. Natl Acad. Sci. USA86, 4887– 4891 (1989). ArticleADSCAS Google Scholar