Coenzyme Q is an obligatory cofactor for uncoupling protein function (original) (raw)
Nicholls, D. G. & Locke, R. M. Thermogenic mechanisms in brown fat. Physiol. Rev.64, 1–64 (1984). ArticleCAS Google Scholar
Klingenberg, M. & Huang, S.-G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta1415, 271–296 (1999). ArticleCAS Google Scholar
Nedergaard, J. & Cannon, B. The uncoupling portein thermogenin and mitochondrial thermogenesis. New Comp. Biochem.23, 385–420 (1992). ArticleCAS Google Scholar
Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nature Genet.15, 269–272 (1997). ArticleCAS Google Scholar
Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett.408, 39–42 (1997). ArticleADSCAS Google Scholar
Mao, W. et al. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells. FEBS Lett.43, 326–330 (1999). Article Google Scholar
Boss, O., Muzzin, P. & Giacobino, J. P. The uncoupling proteins, a review. Eur. J. Endocrinol.139, 1–9 (1998). ArticleCAS Google Scholar
Ricquier, D. & Bouillaud, F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J.345, 161–179 (2000). ArticleCAS Google Scholar
Aquila, H., Link, T. A. & Klingenberg, M. Solute carriers involved in energy transfer of mitochondria form a homologous protein family. FEBS Lett.212, 1–9 (1987). ArticleCAS Google Scholar
Lin, C. S. & Klingenberg, M. Characteristics of the isolated purine nucleotide binding protein from brown fat mitochondria. Biochemistry21, 2950–2956 (1982). ArticleCAS Google Scholar
Jezek, P., Orosz, D. E., Modriansky, M. & Garlid, K. D. Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids. A new look at old hypotheses. J. Biol. Chem.269, 26184–26190 (1994). CASPubMed Google Scholar
Gonzalez-Barroso, M. M., Fleury, C., Bouillaud, F., Nicholls, D. G. & Rial, E. The uncoupling protein UCP1 does not increase the proton conductance of the inner mitochondrial membrane by functioning as a fatty acid anion transporter. J. Biol. Chem.273, 15528–15532 (1998). ArticleCAS Google Scholar
Matthias, A., Jacobsson, A., Cannon, B. & Nedergaard, J. The bioenergetics of brown fat mitochondria from UCP1-ablated mice. Ucp1 is not involved in fatty acid-induced de-energization (“uncoupling”). J. Biol. Chem.274, 28150–28160 (1999). ArticleCAS Google Scholar
Echtay, K. S. et al. Regulation of UCP3 by nucleotides is different from regulation of UCP1. FEBS Lett.450, 8–12 (1999). ArticleCAS Google Scholar
Murdza-Inglis, D. L. et al. Functional reconstitution of rat uncoupling protein following its high level expression in yeast. J. Biol. Chem.266, 11871–11875 (1991). CASPubMed Google Scholar
Arechaga, I. et al. Cysteine residues are not essential for uncoupling protein function. Biochem. J.296, 693–700 (1993). ArticleCAS Google Scholar
Echtay, K. S., Bienengraeber, M. & Klingenberg, M. Mutagenesis of the uncoupling protein of brown adipose tissue. Neutralization of E190 largely abolishes pH control of nucleotide binding. Biochemistry36, 8253–8260 (1997). ArticleCAS Google Scholar
Bathgate, B., Freebairn, E. M., Greenland, A. J. & Reid, G. A. Functional expression of the rat brown adipose tissue uncoupling protein in Saccharomyces cerevisiae. Mol. Microbiol.6, 363–370 (1992). ArticleCAS Google Scholar
Jaburek, M. et al. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J. Biol. Chem.274, 26003–26007 (1999). ArticleCAS Google Scholar
Huang, S.-G. & Klingenberg, M. Fluorescent nucleotide derivatives as specific probes for the uncoupling protein: thermodynamics and kinetics of binding and the control by pH. Biochemistry34, 349–360 (1995). ArticleCAS Google Scholar
Winkler, E., Wachter, E. & Klingenberg, M. Identification of the pH sensor for nucleotide binding in the uncoupling protein from brown adipose tissue. Biochemistry36, 148–155 (1997). ArticleCAS Google Scholar
Skulachev, V. P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett.294, 158–162 (1991). ArticleCAS Google Scholar
Brustovetsky, N. & Klingenberg, M. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J. Biol. Chem.269, 27329–27336 (1994). CASPubMed Google Scholar
Winkler, E. & Klingenberg, M. Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J. Biol. Chem.269, 2508–2515 (1994). CASPubMed Google Scholar
Fiermonte, G., Walker, J. & Palmieri, F. Abundant bacterial expression and reconstitution of an intrinsic membrane transport protein from bovine mitochondria. Biochem. J.294, 293–299 (1993). ArticleCAS Google Scholar
Kaplan, R. S. High-level bacterial expression of mitochondrial transport proteins. J. Bioenerg. Biomembr.28, 41–47 (1996). ArticleCAS Google Scholar
Schroers, A., Burkovski, A., Wohlrab, H. & Kramer, R. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function. J. Biol. Chem.273, 14269–14276 (1998). ArticleCAS Google Scholar
Kowaltowski, A. J., Costa, A. D. & Vercesi, A. E. Activation of the potato plant uncoupling mitochondrial protein inhibits reactive oxygen species generation by the respiratory chain. FEBS Lett.425, 213–216 (1998). ArticleCAS Google Scholar
Walter, L. et al. Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site. J. Biol. Chem.275, 29521–29527 (2000). ArticleCAS Google Scholar