Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism (original) (raw)

References

  1. Stevenson, B. R. & Paul, D. L. The molecular constituents of intercellular junctions. Curr. Opin. Cell Biol. 1, 884–891 ( 1989).
    Article CAS Google Scholar
  2. Ozawa, M., Ringwald, M. & Kemler, R. Uvomorulin–catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl Acad. Sci. USA 87, 4246– 4250 (1990).
    Article ADS CAS Google Scholar
  3. Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8, 1711– 1717 (1989).
    Article CAS Google Scholar
  4. Nagafuchi, A. & Takeichi, M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 7, 3679–3684 (1988).
    Article CAS Google Scholar
  5. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF–1. Nature 382, 638– 642 (1996).
    Article ADS CAS Google Scholar
  6. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).
    Article CAS Google Scholar
  7. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 3– 10 (1996).
    Article CAS Google Scholar
  8. Raper, K. B. Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J. Agr. Res. 50, 135– 147 (1935).
    Google Scholar
  9. Pang, K. M., Lee, E. & Knecht, D. A. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr. Biol. 8, 405–408 ( 1998).
    Article CAS Google Scholar
  10. Nathke, I. S., Hinck, L., Swedlow, J. R., Papkoff, J. & Nelson, W. J. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J. Cell Biol. 125, 1341–1352 (1994).
    Article CAS Google Scholar
  11. Morio, T. et al. The Dictyostelium developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res. 5, 335–340 (1998).
    Article CAS Google Scholar
  12. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
    Article CAS Google Scholar
  13. Aberle, H., Schwartz, H., Hoschuetzky, H. & Kemler, R. Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to α-catenin. J. Biol. Chem. 271 , 1520–1526 (1996).
    Article CAS Google Scholar
  14. Wang, Y. X., Catlett, N. L. & Weisman, L. S. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J. Cell Biol. 140, 1063– 1074 (1998).
    Article CAS Google Scholar
  15. Fleckenstein, D., Rohde, M., Klionsky, D. J. & Rüdiger, M. Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin-α, is associated with the yeast vacuole membrane. J. Cell Sci. 111, 3109–3118 (1998).
    CAS PubMed Google Scholar
  16. Pan, X. & Goldfarb, D. S. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J. Cell Sci. 111, 2137–2147 ( 1998).
    CAS PubMed Google Scholar
  17. Williams, J. G. et al. Origins of the prestalk-prespore pattern in Dictyostelium development. Cell 59, 1157– 1163 (1989).
    Article MathSciNet CAS Google Scholar
  18. Harwood, A. J., Plyte, S. E., Woodgett, J., Strutt, H. & Kay, R. R. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell 80, 139–148 (1995).
    Article CAS Google Scholar
  19. Plyte, S. E., O'Donovan, E., Woodgett, J. R. & Harwood, A. J. Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development 126, 325–333 (1999).
    CAS PubMed Google Scholar
  20. Sokol, S. Y. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr. Opin. Genet. Dev. 9, 405–410 (1999).
    Article CAS Google Scholar
  21. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).
    Article CAS Google Scholar
  22. Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev. 13, 2028–2038 ( 1999).
    Article CAS Google Scholar
  23. Korswagen, H. C., Herman, M. A. & Clevers, H. C. Distinct β-catenins mediate adhesion and signalling functions in C. elegans. Nature 406, 527–532 (2000).
    Article ADS CAS Google Scholar
  24. Manstein, D. J., Schuster, H. P., Morandini, P. & Hunt, D. M. Cloning vectors for the production of proteins in Dictyostelium discoideum . Gene 162, 129–134 (1995).
    Article CAS Google Scholar
  25. Howard, P. K., Ahern, K. G. & Firtel, R. A. Establishment of a transient expression system for Dictyostelium discoideum. Nucleic Acids Res. 16 , 2613–2623 (1988).
    Article CAS Google Scholar
  26. Strafstrom, J. & Steahelin, L. Antibody localisation of extensin in cell walls of carrot storage roots. Planta 174, 321–332 ( 1988).
    Article Google Scholar
  27. Kim, L., Liu, J. & Kimmel, A. R. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99, 399– 408 (1999).
    Article CAS Google Scholar

Download references