Adherens junctions and β-catenin-mediated cell signalling in a non-metazoan organism (original) (raw)
References
Stevenson, B. R. & Paul, D. L. The molecular constituents of intercellular junctions. Curr. Opin. Cell Biol.1, 884–891 ( 1989). ArticleCAS Google Scholar
Ozawa, M., Ringwald, M. & Kemler, R. Uvomorulin–catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl Acad. Sci. USA87, 4246– 4250 (1990). ArticleADSCAS Google Scholar
Ozawa, M., Baribault, H. & Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J.8, 1711– 1717 (1989). ArticleCAS Google Scholar
Nagafuchi, A. & Takeichi, M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J.7, 3679–3684 (1988). ArticleCAS Google Scholar
Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF–1. Nature382, 638– 642 (1996). ArticleADSCAS Google Scholar
Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell86, 391–399 (1996). ArticleCAS Google Scholar
Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev.59, 3– 10 (1996). ArticleCAS Google Scholar
Raper, K. B. Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. J. Agr. Res.50, 135– 147 (1935). Google Scholar
Pang, K. M., Lee, E. & Knecht, D. A. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr. Biol.8, 405–408 ( 1998). ArticleCAS Google Scholar
Nathke, I. S., Hinck, L., Swedlow, J. R., Papkoff, J. & Nelson, W. J. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J. Cell Biol.125, 1341–1352 (1994). ArticleCAS Google Scholar
Morio, T. et al. The Dictyostelium developmental cDNA project: generation and analysis of expressed sequence tags from the first-finger stage of development. DNA Res.5, 335–340 (1998). ArticleCAS Google Scholar
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402 (1997). ArticleCAS Google Scholar
Aberle, H., Schwartz, H., Hoschuetzky, H. & Kemler, R. Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to α-catenin. J. Biol. Chem.271 , 1520–1526 (1996). ArticleCAS Google Scholar
Wang, Y. X., Catlett, N. L. & Weisman, L. S. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J. Cell Biol.140, 1063– 1074 (1998). ArticleCAS Google Scholar
Fleckenstein, D., Rohde, M., Klionsky, D. J. & Rüdiger, M. Yel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin-α, is associated with the yeast vacuole membrane. J. Cell Sci.111, 3109–3118 (1998). CASPubMed Google Scholar
Pan, X. & Goldfarb, D. S. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J. Cell Sci.111, 2137–2147 ( 1998). CASPubMed Google Scholar
Williams, J. G. et al. Origins of the prestalk-prespore pattern in Dictyostelium development. Cell59, 1157– 1163 (1989). ArticleMathSciNetCAS Google Scholar
Harwood, A. J., Plyte, S. E., Woodgett, J., Strutt, H. & Kay, R. R. Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell80, 139–148 (1995). ArticleCAS Google Scholar
Plyte, S. E., O'Donovan, E., Woodgett, J. R. & Harwood, A. J. Glycogen synthase kinase-3 (GSK-3) is regulated during Dictyostelium development via the serpentine receptor cAR3. Development126, 325–333 (1999). CASPubMed Google Scholar
Sokol, S. Y. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr. Opin. Genet. Dev.9, 405–410 (1999). ArticleCAS Google Scholar
Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell90, 707–716 (1997). ArticleCAS Google Scholar
Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev.13, 2028–2038 ( 1999). ArticleCAS Google Scholar
Korswagen, H. C., Herman, M. A. & Clevers, H. C. Distinct β-catenins mediate adhesion and signalling functions in C. elegans. Nature406, 527–532 (2000). ArticleADSCAS Google Scholar
Manstein, D. J., Schuster, H. P., Morandini, P. & Hunt, D. M. Cloning vectors for the production of proteins in Dictyostelium discoideum . Gene162, 129–134 (1995). ArticleCAS Google Scholar
Howard, P. K., Ahern, K. G. & Firtel, R. A. Establishment of a transient expression system for Dictyostelium discoideum. Nucleic Acids Res.16 , 2613–2623 (1988). ArticleCAS Google Scholar
Strafstrom, J. & Steahelin, L. Antibody localisation of extensin in cell walls of carrot storage roots. Planta174, 321–332 ( 1988). Article Google Scholar
Kim, L., Liu, J. & Kimmel, A. R. The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell99, 399– 408 (1999). ArticleCAS Google Scholar