Asymmetric cell division during animal development (original) (raw)
References
Horvitz, H. R. & Herskowitz, I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell68, 237–255 (1992). ArticleCASPubMed Google Scholar
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100, 64–119 ( 1983). CASPubMed Google Scholar
Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev.6, 408–415 (1996). CASPubMed Google Scholar
Rose, L. S. & Kemphues, K. J. Early patterning of the C. elegans embryo. Annu. Rev. Genet.32, 521–545 (1998). CASPubMed Google Scholar
Schubert, C. M., Lin, R., de Vries, C. J., Plasterk, R. H. & Priess, J. R. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell5, 671–682 (2000). CASPubMed Google Scholar
Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell52, 311– 320 (1988).This report describes the identification of PAR genes, which turned out to be a conserved machinery for orientating asymmetric cell division. CASPubMed Google Scholar
Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos . Cell83, 743–752 (1995). CASPubMed Google Scholar
Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos . Development126, 127– 135 (1999). CASPubMed Google Scholar
Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development125, 3607–3614 ( 1998). CASPubMed Google Scholar
Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development122, 3133– 3140 (1996). CASPubMed Google Scholar
Cheng, N. N., Kirby, C. M. & Kemphues, K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics139, 549–559 ( 1995). CASPubMedPubMed Central Google Scholar
Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos . Development122, 3075– 3084 (1996). CASPubMed Google Scholar
Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell81, 611–620 (1995). This report describes the cloning of PAR-1, the first asymmetrically segregating protein inC. elegans. CASPubMed Google Scholar
Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature377, 627– 630 (1995). CASPubMed Google Scholar
Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature377, 624– 627 (1995). CASPubMed Google Scholar
Spana, E. P. & Doe, C. Q. The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development121, 3187– 3195 (1995). CASPubMed Google Scholar
Li, P., Yang, X., Wasser, M., Cai, Y. & Chia, W. Inscuteable and Staufen mediate asymmetric localization and segregation of Prospero RNA during Drosophila neuroblast cell divisions. Cell90, 437–447 ( 1997). CASPubMed Google Scholar
Broadus, J., Fuerstenberg, S. & Doe, C. Q. Staufen-dependent localization of Prospero mRNA contributes to neuroblast daughter-cell fate. Nature391, 792–795 (1998). CASPubMed Google Scholar
Schuldt, A. J. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev.12, 1847–1857 (1998). CASPubMedPubMed Central Google Scholar
Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell90, 449–458 (1997). ArticleCASPubMed Google Scholar
Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature390, 625–629 ( 1997). ArticleCASPubMed Google Scholar
Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells . Cell76, 477–491 (1994). The first report describing an asymmetrically segregating determinant during somatic cell division. CASPubMed Google Scholar
Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell95, 225–235 ( 1998). CASPubMed Google Scholar
Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell67, 941– 953 (1991). CASPubMed Google Scholar
Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell65, 451– 464 (1991). CASPubMed Google Scholar
Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell58, 349–360 ( 1989). CASPubMed Google Scholar
Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F. & Chia, W. Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev.12, 304–315 ( 1998). CASPubMedPubMed Central Google Scholar
Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable -mediated asymmetry of ganglion mother cells. Genes Dev.12, 1858–1870 (1998). CASPubMedPubMed Central Google Scholar
Ruiz Gomez, M. & Bate, M. Segregation of myogenic lineages in Drosophila requires numb. Development124, 4857–4866 ( 1997). CASPubMed Google Scholar
Park, M., Yaich, L. E. & Bodmer, R. Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, notch, and sanpodo. Mech. Dev.75, 117– 126 (1998). CASPubMed Google Scholar
Spana, E. P., Kopczynski, C., Goodman, C. S. & Doe, C. Q. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development121, 3489–3494 (1995). CASPubMed Google Scholar
Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron17, 27–41 (1996). PubMed Google Scholar
Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA93, 11925–11932 (1996). CASPubMedPubMed Central Google Scholar
Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature383, 50–55 (1996). Describes the first protein that couples determinant segregation to spindle orientation and seems to establish the axis of polarity. CASPubMed Google Scholar
Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol.174, 65– 81 (1996). CASPubMed Google Scholar
Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol.2, 7–12 (2000). [PubMed] CASPubMed Google Scholar
Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature402, 548–551 (1999). CASPubMed Google Scholar
Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature402, 544– 547 (1999). References38and39reveal a potential mechanism that orients asymmetric cell division along one of the body axis, in this case the apical–basal axis. CASPubMed Google Scholar
Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol.8, 1357–1365 (1998). CASPubMed Google Scholar
Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila . J. Cell Biol.134, 149– 163 (1996). CASPubMed Google Scholar
Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila . Nature Cell Biol.3, 43– 49 (2001). CASPubMed Google Scholar
Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol.150, 1361–1374 (2000). CASPubMedPubMed Central Google Scholar
Fuerstenberg, S., Peng, C. Y., Alvarez-Ortiz, P., Hor, T. & Doe, C. Q. Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol. Cell. Neurosci.12, 325– 339 (1998). CASPubMed Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol.2, 531–539 (2000). [PubMed] CASPubMed Google Scholar
Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci.113, 3267– 3275 (2000). CASPubMed Google Scholar
Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol.2, 540–547 (2000). [PubMed] CASPubMed Google Scholar
Qiu, R. G., Abo, A. & Martin, G. S. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformationM . Curr. Biol.10, 697–707 (2000). CASPubMed Google Scholar
Brazil, D. B. & Hemmings, B. A. Cell polarity: Scaffold proteins par excellence. Curr. Biol.10, R592– R594 (2000). CASPubMed Google Scholar
Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol.143, 95–106 (1998). CASPubMedPubMed Central Google Scholar
Jantsch-Plunger, V. et al. CYK-4. A rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol.149, 1391–1404 (2000). CASPubMedPubMed Central Google Scholar
Goldstein, B. Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. J. Cell Biol.129, 1071– 1080 (1995). CASPubMed Google Scholar
Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell90, 695– 705 (1997). CASPubMed Google Scholar
Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev.13, 2028–2038 ( 1999). CASPubMedPubMed Central Google Scholar
Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila . Nature393, 178–181 (1998). This report describes a connection between asymmetric cell division and planar polarity and shows the function of Frizzled in establishing this connection. CASPubMed Google Scholar
Roegiers, F., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The sensory organ precursor cell lineage in Drosophila contains two types of asymmetric divisions. Nature Cell Biol.3, 58–67 (2001). CASPubMed Google Scholar
Bray, S. Planar polarity: out of joint? Curr. Biol.10, R155–R158 (2000). CASPubMed Google Scholar
Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet.14, 452– 458 (1998). CASPubMed Google Scholar
Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature338, 263–264 ( 1989). CASPubMed Google Scholar
Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling . Nature387, 292–295 (1997). CASPubMed Google Scholar
Rulifson, E. J., Wu, C. H. & Nusse, R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol. Cell6 , 117–126 (2000). CASPubMed Google Scholar
Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol.9, 1247–1250 (1999). CASPubMed Google Scholar
Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates the localisation of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol.3, 50– 57 (2001). CASPubMed Google Scholar
Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in early C. elegans embryos. Nature Cell Biol. (in the press).
Zwaal, R. R. et al. G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell86, 619–629 (1996). CASPubMed Google Scholar
Sheldahl, L. C., Park, M., Malbon, C. C. & Moon, R. T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol.9, 695– 698 (1999). CASPubMed Google Scholar
Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila . Curr. Biol.10, 353– 362 (2000). CASPubMed Google Scholar
Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell100, 399–409 ( 2000). CASPubMed Google Scholar
Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. (Online)20, RC84 (2000).
Siderovski, D. P., Diverse-Pierluissi, M. & De Vries, L. The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci.24, 340–341 (1999). CASPubMed Google Scholar
Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem.274, 33202–33205 (1999). CASPubMed Google Scholar
Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell95, 81–91 (1998). CASPubMed Google Scholar
Chant, J. Cell polarity in yeast. Annu. Rev. Cell. Dev. Biol.15, 365–391 (1999). CASPubMed Google Scholar
Nern, A. & Arkowitz, R. A. A Cdc24p–Far1p–Gβγ protein complex required for yeast orientation during mating. J. Cell Biol.144, 1187–1202 (1999). CASPubMedPubMed Central Google Scholar
Mello, C. C. et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature382, 710– 712 (1996). CASPubMed Google Scholar
Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature382, 713– 716 (1996). CASPubMed Google Scholar
Reese, K. J., Dunn, M. A., Waddle, J. A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell6, 445–455 ( 2000). CASPubMed Google Scholar
Lu, B., Ackerman, L., Jan, L. Y. & Jan, Y. N. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell4, 883–891 (1999). CASPubMed Google Scholar
Peng, C.-Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature408, 596–600 (2000). CASPubMed Google Scholar
Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour suppressor proteins in asymmetric division of Drosophila neuroblast . Nature408, 593–596 (2000). References79and80describe the first genes that are required for basal, but not apical, protein localization inDrosophilaneuroblasts, suggesting that they are components of the transport machinery. CASPubMed Google Scholar
Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol.134, 1469–1482 (1996). CASPubMed Google Scholar
Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science289, 113–116 (2000). CASPubMed Google Scholar
Strand, D., Raska, I. & Mechler, B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton. J. Cell Biol.127, 1345–1360 ( 1994). CASPubMed Google Scholar
Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell66, 451– 464 (1991). CASPubMed Google Scholar
Strand, D. et al. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol.127, 1361– 1373 (1994). CASPubMed Google Scholar
De Lorenzo, C., Mechler, B. M. & Bryant, P. J. What is Drosophila telling us about cancer? Cancer Metastasis Rev.18, 295– 311 (1999). CASPubMed Google Scholar
Kagami, M., Toh-e, A. & Matsui, Y. Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function. Genetics149, 1717–1727 (1998). CASPubMedPubMed Central Google Scholar
Qian, X., Goderie, S. K., Shen, Q., Stern, J. H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development125, 3143–3152 (1998). CASPubMed Google Scholar
Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis . Cell82, 631–641 (1995). CASPubMed Google Scholar
Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron17, 43–53 (1996). CASPubMed Google Scholar
Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron23, 71–81 ( 1999). CASPubMed Google Scholar
Zhong, W. et al. Mouse numb is an essential gene involved in cortical neurogenesis . Proc. Natl Acad. Sci. USA97, 6844– 6849 (2000). CASPubMedPubMed Central Google Scholar
Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell96, 25– 34 (1999). CASPubMed Google Scholar
Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell97, 703–716 (1999). CASPubMed Google Scholar
Hyman, A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol.109, 1185–1193 ( 1989). Laser ablation of microtubules reveals a mechanism for orientation of mitotic spindles: astral microtubules attach to a cortical site and pull the spindle towards the site. CASPubMed Google Scholar
Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell101, 377– 388 (2000). CASPubMed Google Scholar
Bohm, H., Brinkmann, V., Drab, M., Henske, A. & Kurzchalia, T. V. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity . Curr. Biol.7, 603–606 (1997). CASPubMed Google Scholar
Levitan, D. J., Boyd, L., Mello, C. C., Kemphues, K. J. & Stinchcomb, D. T. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs . Proc. Natl Acad. Sci. USA91, 6108– 6112 (1994). CASPubMedPubMed Central Google Scholar
Burglin, T. R. A Caenorhabditis elegans prospero homologue defines a novel domain . Trends Biochem. Sci.19, 70– 71 (1994). CASPubMed Google Scholar
Oliver, G. et al. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev.44, 3– 16 (1993). CASPubMed Google Scholar