Asymmetric cell division during animal development (original) (raw)

References

  1. Horvitz, H. R. & Herskowitz, I. Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255 (1992).
    Article CAS PubMed Google Scholar
  2. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 ( 1983).
    CAS PubMed Google Scholar
  3. Guo, S. & Kemphues, K. J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).
    CAS PubMed Google Scholar
  4. Kemphues, K. PARsing embryonic polarity. Cell 101, 345 –348 (2000).
    CAS PubMed Google Scholar
  5. Rose, L. S. & Kemphues, K. J. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545 (1998).
    CAS PubMed Google Scholar
  6. Schubert, C. M., Lin, R., de Vries, C. J., Plasterk, R. H. & Priess, J. R. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell 5, 671–682 (2000).
    CAS PubMed Google Scholar
  7. Kemphues, K. J., Priess, J. R., Morton, D. G. & Cheng, N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52, 311– 320 (1988).This report describes the identification of PAR genes, which turned out to be a conserved machinery for orientating asymmetric cell division.
    CAS PubMed Google Scholar
  8. Etemad-Moghadam, B., Guo, S. & Kemphues, K. J. Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos . Cell 83, 743–752 (1995).
    CAS PubMed Google Scholar
  9. Hung, T. J. & Kemphues, K. J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos . Development 126, 127– 135 (1999).
    CAS PubMed Google Scholar
  10. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 ( 1998).
    CAS PubMed Google Scholar
  11. Watts, J. L. et al. par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development 122, 3133– 3140 (1996).
    CAS PubMed Google Scholar
  12. Cheng, N. N., Kirby, C. M. & Kemphues, K. J. Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3. Genetics 139, 549–559 ( 1995).
    CAS PubMed PubMed Central Google Scholar
  13. Boyd, L., Guo, S., Levitan, D., Stinchcomb, D. T. & Kemphues, K. J. PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos . Development 122, 3075– 3084 (1996).
    CAS PubMed Google Scholar
  14. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995). This report describes the cloning of PAR-1, the first asymmetrically segregating protein in C. elegans.
    CAS PubMed Google Scholar
  15. Hirata, J., Nakagoshi, H., Nabeshima, Y. & Matsuzaki, F. Asymmetric segregation of the homeodomain protein Prospero during Drosophila development. Nature 377, 627– 630 (1995).
    CAS PubMed Google Scholar
  16. Knoblich, J. A., Jan, L. Y. & Jan, Y. N. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624– 627 (1995).
    CAS PubMed Google Scholar
  17. Spana, E. P. & Doe, C. Q. The Prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187– 3195 (1995).
    CAS PubMed Google Scholar
  18. Li, P., Yang, X., Wasser, M., Cai, Y. & Chia, W. Inscuteable and Staufen mediate asymmetric localization and segregation of Prospero RNA during Drosophila neuroblast cell divisions. Cell 90, 437–447 ( 1997).
    CAS PubMed Google Scholar
  19. Broadus, J., Fuerstenberg, S. & Doe, C. Q. Staufen-dependent localization of Prospero mRNA contributes to neuroblast daughter-cell fate. Nature 391, 792–795 (1998).
    CAS PubMed Google Scholar
  20. Schuldt, A. J. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 12, 1847–1857 (1998).
    CAS PubMed PubMed Central Google Scholar
  21. Shen, C. P., Jan, L. Y. & Jan, Y. N. Miranda is required for the asymmetric localization of Prospero during mitosis in Drosophila. Cell 90, 449–458 (1997).
    Article CAS PubMed Google Scholar
  22. Ikeshima-Kataoka, H., Skeath, J. B., Nabeshima, Y., Doe, C. Q. & Matsuzaki, F. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions. Nature 390, 625–629 ( 1997).
    Article CAS PubMed Google Scholar
  23. Rhyu, M. S., Jan, L. Y. & Jan, Y. N. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells . Cell 76, 477–491 (1994). The first report describing an asymmetrically segregating determinant during somatic cell division.
    CAS PubMed Google Scholar
  24. Lu, B., Rothenberg, M., Jan, L. Y. & Jan, Y. N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 ( 1998).
    CAS PubMed Google Scholar
  25. Vaessin, H. et al. prospero is expressed in neuronal precursors and encodes a nuclear protein that is involved in the control of axonal outgrowth in Drosophila. Cell 67, 941– 953 (1991).
    CAS PubMed Google Scholar
  26. Doe, C. Q., Chu-LaGraff, Q., Wright, D. M. & Scott, M. P. The prospero gene specifies cell fates in the Drosophila central nervous system. Cell 65, 451– 464 (1991).
    CAS PubMed Google Scholar
  27. Uemura, T., Shepherd, S., Ackerman, L., Jan, L. Y. & Jan, Y. N. numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360 ( 1989).
    CAS PubMed Google Scholar
  28. Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F. & Chia, W. Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev. 12, 304–315 ( 1998).
    CAS PubMed PubMed Central Google Scholar
  29. Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable -mediated asymmetry of ganglion mother cells. Genes Dev. 12, 1858–1870 (1998).
    CAS PubMed PubMed Central Google Scholar
  30. Ruiz Gomez, M. & Bate, M. Segregation of myogenic lineages in Drosophila requires numb. Development 124, 4857–4866 ( 1997).
    CAS PubMed Google Scholar
  31. Park, M., Yaich, L. E. & Bodmer, R. Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, notch, and sanpodo. Mech. Dev. 75, 117– 126 (1998).
    CAS PubMed Google Scholar
  32. Spana, E. P., Kopczynski, C., Goodman, C. S. & Doe, C. Q. Asymmetric localization of numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121, 3489–3494 (1995).
    CAS PubMed Google Scholar
  33. Guo, M., Jan, L. Y. & Jan, Y. N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).
    PubMed Google Scholar
  34. Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA 93, 11925–11932 (1996).
    CAS PubMed PubMed Central Google Scholar
  35. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996). Describes the first protein that couples determinant segregation to spindle orientation and seems to establish the axis of polarity.
    CAS PubMed Google Scholar
  36. Kraut, R. & Campos-Ortega, J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol. 174, 65– 81 (1996).
    CAS PubMed Google Scholar
  37. Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 (2000). [PubMed]
    CAS PubMed Google Scholar
  38. Schober, M., Schaefer, M. & Knoblich, J. A. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).
    CAS PubMed Google Scholar
  39. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544– 547 (1999). References 38 and 39 reveal a potential mechanism that orients asymmetric cell division along one of the body axis, in this case the apical–basal axis.
    CAS PubMed Google Scholar
  40. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).
    CAS PubMed Google Scholar
  41. Muller, H. A. & Wieschaus, E. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila . J. Cell Biol. 134, 149– 163 (1996).
    CAS PubMed Google Scholar
  42. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila . Nature Cell Biol. 3, 43– 49 (2001).
    CAS PubMed Google Scholar
  43. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).
    CAS PubMed PubMed Central Google Scholar
  44. Fuerstenberg, S., Peng, C. Y., Alvarez-Ortiz, P., Hor, T. & Doe, C. Q. Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol. Cell. Neurosci. 12, 325– 339 (1998).
    CAS PubMed Google Scholar
  45. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000). [PubMed]
    CAS PubMed Google Scholar
  46. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267– 3275 (2000).
    CAS PubMed Google Scholar
  47. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000). [PubMed]
    CAS PubMed Google Scholar
  48. Qiu, R. G., Abo, A. & Martin, G. S. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformationM . Curr. Biol. 10, 697–707 (2000).
    CAS PubMed Google Scholar
  49. Brazil, D. B. & Hemmings, B. A. Cell polarity: Scaffold proteins par excellence. Curr. Biol. 10, R592– R594 (2000).
    CAS PubMed Google Scholar
  50. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).
    CAS PubMed PubMed Central Google Scholar
  51. Jantsch-Plunger, V. et al. CYK-4. A rho family GTPase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391–1404 (2000).
    CAS PubMed PubMed Central Google Scholar
  52. Goldstein, B. Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo. J. Cell Biol. 129, 1071– 1080 (1995).
    CAS PubMed Google Scholar
  53. Thorpe, C. J., Schlesinger, A., Carter, J. C. & Bowerman, B. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695– 705 (1997).
    CAS PubMed Google Scholar
  54. Schlesinger, A., Shelton, C. A., Maloof, J. N., Meneghini, M. & Bowerman, B. Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes Dev. 13, 2028–2038 ( 1999).
    CAS PubMed PubMed Central Google Scholar
  55. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila . Nature 393, 178–181 (1998). This report describes a connection between asymmetric cell division and planar polarity and shows the function of Frizzled in establishing this connection.
    CAS PubMed Google Scholar
  56. Roegiers, F., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The sensory organ precursor cell lineage in Drosophila contains two types of asymmetric divisions. Nature Cell Biol. 3, 58–67 (2001).
    CAS PubMed Google Scholar
  57. Bray, S. Planar polarity: out of joint? Curr. Biol. 10, R155–R158 (2000).
    CAS PubMed Google Scholar
  58. Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 14, 452– 458 (1998).
    CAS PubMed Google Scholar
  59. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 ( 1989).
    CAS PubMed Google Scholar
  60. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling . Nature 387, 292–295 (1997).
    CAS PubMed Google Scholar
  61. Rulifson, E. J., Wu, C. H. & Nusse, R. Pathway specificity by the bifunctional receptor frizzled is determined by affinity for wingless. Mol. Cell 6 , 117–126 (2000).
    CAS PubMed Google Scholar
  62. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250 (1999).
    CAS PubMed Google Scholar
  63. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates the localisation of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50– 57 (2001).
    CAS PubMed Google Scholar
  64. Gotta, M. & Ahringer, J. Distinct roles for Gα and Gβγ in regulating spindle position and orientation in early C. elegans embryos. Nature Cell Biol. (in the press).
  65. Zwaal, R. R. et al. G proteins are required for spatial orientation of early cell cleavages in C. elegans embryos. Cell 86, 619–629 (1996).
    CAS PubMed Google Scholar
  66. Sheldahl, L. C., Park, M., Malbon, C. C. & Moon, R. T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695– 698 (1999).
    CAS PubMed Google Scholar
  67. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila . Curr. Biol. 10, 353– 362 (2000).
    CAS PubMed Google Scholar
  68. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 ( 2000).
    CAS PubMed Google Scholar
  69. Parmentier, M. L. et al. Rapsynoid/Partner of Inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J. Neurosci. (Online) 20, RC84 (2000).
  70. Siderovski, D. P., Diverse-Pierluissi, M. & De Vries, L. The GoLoco motif: a Gαi/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci. 24, 340–341 (1999).
    CAS PubMed Google Scholar
  71. Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274, 33202–33205 (1999).
    CAS PubMed Google Scholar
  72. Parent, C. A., Blacklock, B. J., Froehlich, W. M., Murphy, D. B. & Devreotes, P. N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).
    CAS PubMed Google Scholar
  73. Chant, J. Cell polarity in yeast. Annu. Rev. Cell. Dev. Biol. 15, 365–391 (1999).
    CAS PubMed Google Scholar
  74. Nern, A. & Arkowitz, R. A. A Cdc24p–Far1p–Gβγ protein complex required for yeast orientation during mating. J. Cell Biol. 144, 1187–1202 (1999).
    CAS PubMed PubMed Central Google Scholar
  75. Mello, C. C. et al. The PIE-1 protein and germline specification in C. elegans embryos. Nature 382, 710– 712 (1996).
    CAS PubMed Google Scholar
  76. Seydoux, G. et al. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382, 713– 716 (1996).
    CAS PubMed Google Scholar
  77. Reese, K. J., Dunn, M. A., Waddle, J. A. & Seydoux, G. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell 6, 445–455 ( 2000).
    CAS PubMed Google Scholar
  78. Lu, B., Ackerman, L., Jan, L. Y. & Jan, Y. N. Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891 (1999).
    CAS PubMed Google Scholar
  79. Peng, C.-Y., Manning, L., Albertson, R. & Doe, C. Q. The tumour suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).
    CAS PubMed Google Scholar
  80. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour suppressor proteins in asymmetric division of Drosophila neuroblast . Nature 408, 593–596 (2000). References 79 and 80 describe the first genes that are required for basal, but not apical, protein localization in Drosophila neuroblasts, suggesting that they are components of the transport machinery.
    CAS PubMed Google Scholar
  81. Woods, D. F., Hough, C., Peel, D., Callaini, G. & Bryant, P. J. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J. Cell Biol. 134, 1469–1482 (1996).
    CAS PubMed Google Scholar
  82. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).
    CAS PubMed Google Scholar
  83. Strand, D., Raska, I. & Mechler, B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton. J. Cell Biol. 127, 1345–1360 ( 1994).
    CAS PubMed Google Scholar
  84. Woods, D. F. & Bryant, P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451– 464 (1991).
    CAS PubMed Google Scholar
  85. Strand, D. et al. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol. 127, 1361– 1373 (1994).
    CAS PubMed Google Scholar
  86. De Lorenzo, C., Mechler, B. M. & Bryant, P. J. What is Drosophila telling us about cancer? Cancer Metastasis Rev. 18, 295– 311 (1999).
    CAS PubMed Google Scholar
  87. Kagami, M., Toh-e, A. & Matsui, Y. Sro7p, a Saccharomyces cerevisiae counterpart of the tumor suppressor l(2)gl protein, is related to myosins in function. Genetics 149, 1717–1727 (1998).
    CAS PubMed PubMed Central Google Scholar
  88. Qian, X., Goderie, S. K., Shen, Q., Stern, J. H. & Temple, S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152 (1998).
    CAS PubMed Google Scholar
  89. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis . Cell 82, 631–641 (1995).
    CAS PubMed Google Scholar
  90. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).
    CAS PubMed Google Scholar
  91. Wakamatsu, Y., Maynard, T. M., Jones, S. U. & Weston, J. A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 ( 1999).
    CAS PubMed Google Scholar
  92. Zhong, W. et al. Mouse numb is an essential gene involved in cortical neurogenesis . Proc. Natl Acad. Sci. USA 97, 6844– 6849 (2000).
    CAS PubMed PubMed Central Google Scholar
  93. Johansson, C. B. et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96, 25– 34 (1999).
    CAS PubMed Google Scholar
  94. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).
    CAS PubMed Google Scholar
  95. Hyman, A. A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109, 1185–1193 ( 1989). Laser ablation of microtubules reveals a mechanism for orientation of mitotic spindles: astral microtubules attach to a cortical site and pull the spindle towards the site.
    CAS PubMed Google Scholar
  96. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377– 388 (2000).
    CAS PubMed Google Scholar
  97. Bohm, H., Brinkmann, V., Drab, M., Henske, A. & Kurzchalia, T. V. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity . Curr. Biol. 7, 603–606 (1997).
    CAS PubMed Google Scholar
  98. Levitan, D. J., Boyd, L., Mello, C. C., Kemphues, K. J. & Stinchcomb, D. T. par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs . Proc. Natl Acad. Sci. USA 91, 6108– 6112 (1994).
    CAS PubMed PubMed Central Google Scholar
  99. Burglin, T. R. A Caenorhabditis elegans prospero homologue defines a novel domain . Trends Biochem. Sci. 19, 70– 71 (1994).
    CAS PubMed Google Scholar
  100. Oliver, G. et al. Prox 1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3– 16 (1993).
    CAS PubMed Google Scholar

Download references