Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents (original) (raw)
Gabow, P. A. Autosomal dominant polycystic kidney disease. N. Engl. J. Med.329, 332–342 ( 1993). ArticleCAS Google Scholar
Grantham, J. J. 1992 Homer Smith Award. Fluid secretion, cellular proliferation, and the pathogenesis of renal epithelial cysts. J. Am. Soc. Nephrol.3, 1841–1857 (1993). CASPubMed Google Scholar
The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell78, 881–894 (1994). Article Google Scholar
The International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell81, 289– 298 (1995). Article Google Scholar
Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genet.10, 151–160 (1995). ArticleCAS Google Scholar
Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science272, 1339–1342 (1996). ArticleADSCAS Google Scholar
Reeders, S. T. et al. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16. Nature317, 542–544 (1985). ArticleADSCAS Google Scholar
Kimberling, W. J. et al. Linkage heterogeneity of autosomal dominant polycystic kidney disease. N. Engl. J. Med.319, 913– 918 (1988). ArticleCAS Google Scholar
Peters, D. J. & Sandkuijl, L. A. Genetic heterogeneity of polycystic kidney disease in Europe. Contrib. Nephrol.97, 128–139 (1992). ArticleCAS Google Scholar
Harris, P. C. Autosomal dominant polycystic kidney disease: clues to pathogenesis. Hum. Mol. Genet.8, 1861–1866 (1999). ArticleCAS Google Scholar
Watnick, T. & Germino, G. G. Molecular basis of autosomal dominant polycystic kidney disease. Semin. Nephrol.19, 327–343 (1999). CASPubMed Google Scholar
Wu, G. & Somlo, S. Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. Mol. Genet. Metab.69, 1–15 (2000 ). ArticleCAS Google Scholar
Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nature Genet.16, 179– 183 (1997). ArticleCAS Google Scholar
Tsiokas, L. et al. Specific association of the gene product of PKD2 with the TRPC1 channel. Proc. Natl Acad. Sci. USA96, 3934–3939 (1999). ArticleADSCAS Google Scholar
Nomura, H. et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J. Biol. Chem.273, 25967– 25973 (1998). ArticleCAS Google Scholar
Chen, X. Z. et al. Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature401, 383– 386 (1999). ADSCASPubMed Google Scholar
Tsiokas, L., Kim, E., Arnould, T., Sukhatme, V. P. & Walz, G. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl Acad. Sci. USA94, 6965–6970 (1997). ArticleADSCAS Google Scholar
Van Driessche, W., Desmedt, L., De Smet, P. & Simaels, J. Poorly selective cation channels in apical membranes of epithelia. Experimentia Supplementa66, 225–245 (1993). CAS Google Scholar
Popp, R., Englert, H. C., Lang, H. J. & Gogelein, H. Inhibitors of nonselective cation channels in cells of the blood-brain barrier. Experimentia Supplementa66, 213– 218 (1993). CAS Google Scholar
Cai, Y. et al. Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem.274, 28557– 28565 (1999). ArticleCAS Google Scholar
Dalgleish, A. G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature312, 763 –767 (1984). ArticleADSCAS Google Scholar
Peral, B. et al. Screening the 3′ region of the polycystic kidney disease 1 (PKD1) gene reveals six novel mutations. Am. J. Hum. Genet.58, 86–96 (1996). CASPubMedPubMed Central Google Scholar
Boletta, A. et al. Polycystin-1, the gene product of PKD1, induces resistance to apoptosis and spontaneous tubulogenesis in MDCK cells. Mol. Cell6, 1267–1273 ( 2000). ArticleCAS Google Scholar
Brooks, S. P. & Storey, K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal. Biochem.201, 119–126 ( 1992). ArticleCAS Google Scholar
Hanaoka, K., Wright, J. M., Cheglakov, I . B., Morita, T. & Guggino, W. B. A 59 amino acid insertion increases Ca2+ sensitivity of rbslo1, a Ca2+-activated K+ channel in renal epithelia. J. Membr. Biol.172, 193–201 (1999). ArticleCAS Google Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch.391, 85–100 ( 1981). ArticleCAS Google Scholar
Hanaoka, K., Devuyst, O., Schwiebert, E. M., Wilson, P. D. & Guggino, W. B. A role for CFTR in human autosomal dominant polycystic kidney disease. Am. J. Physiol.270, C389–C399 (1996). ArticleCAS Google Scholar
Fan, J. S. & Palade, P. Perforated patch recording with β-escin. Pflugers Arch.436, 1021– 1023 (1998). ArticleCAS Google Scholar
Benham, C. D. & Tsien, R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature328, 275–278 ( 1987). ArticleADSCAS Google Scholar
Valera, S. et al. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature371, 516– 519 (1994). ArticleADSCAS Google Scholar