Retroviral recombination: what drives the switch? (original) (raw)

References

  1. Rein, A. Retroviral RNA packaging: a review. Arch. Virol. Suppl. 9, 513–522 (1994).
    CAS Google Scholar
  2. Gilboa, E., Mitra, S. W., Goff, S. & Baltimore, D. A detailed model of reverse transcription and tests of crucial aspects. Cell 18, 93–100 (1979).
    Article CAS Google Scholar
  3. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).
    Google Scholar
  4. Goodrich, D. W. & Duesberg, P. H. Retroviral recombination during reverse transcription. Proc. Natl Acad. Sci. USA 87, 2052–2056 (1990).
    Article CAS Google Scholar
  5. Hu, W. S. & Temin, H. M. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl Acad. Sci. USA 87, 1556–1560 (1990).
    Article CAS Google Scholar
  6. Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42, 1–26 (1979).
    Article CAS Google Scholar
  7. Elder, J. H. et al. Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc. Natl Acad. Sci. USA 74, 4676–4680 (1977).
    Article CAS Google Scholar
  8. Blair, D. G. Genetic recombination between avian leukosis and sarcoma viruses. Experimental variables and the frequencies of recombination. Virology 77, 534–544 (1977).
    Article CAS Google Scholar
  9. Sharp, P. M., Bailes, E., Robertson, D. L., Gao, F. & Hahn, B. H. Origins and evolution of AIDS viruses. Biol. Bull. 196, 338–342 (1999).
    Article CAS Google Scholar
  10. Peliska, J. A. & Benkovic, S. J. Mechanism of DNA strand transfer reactions catalysed by HIV-1 reverse transcriptase. Science 258, 1112–1118 (1992).
    Article CAS Google Scholar
  11. DeStefano, J. J., Mallaber, L. M., Rodriguez-Rodriguez, L., Fay, P. J. & Bambara, R. A. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J. Virol. 66, 6370–6378 (1992).
    CAS PubMed Central Google Scholar
  12. DeStefano, J. J., Bambara, R. A. & Fay, P. J. The mechanism of human immunodeficiency virus reverse transcriptase-catalysed strand transfer from internal regions of heteropolymeric RNA templates. J. Biol. Chem. 269, 161–168 (1994).
    CAS Google Scholar
  13. Wu, W., Blumberg, B. M., Fay, P. J. & Bambara, R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J. Biol. Chem. 270, 325–332 (1995).
    Article Google Scholar
  14. Suo, Z. & Johnson, K. A. Effect of RNA secondary structure on the kinetics of DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry 36, 12459–12467 (1997).
    Article CAS Google Scholar
  15. Kim, J. K., Palaniappan, C., Wu, W., Fay, P. J. & Bambara, R. A. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J. Biol. Chem. 272, 16769–16777 (1997).
    Article CAS Google Scholar
  16. Darlix, J. L., Lapadat-Tapolsky, M., de Rocquigny, H. & Roques, B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol. 254, 523–537 (1995).
    Article CAS Google Scholar
  17. Negroni, M. & Buc, H. Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. J. Mol. Biol. 286, 15–31 (1999).
    Article CAS Google Scholar
  18. Guo, J., Henderson, L. E., Bess, J., Kane, B. & Levin, J. G. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J. Virol. 71, 5178–5188 (1997).
    CAS PubMed Central Google Scholar
  19. Peliska, J. A., Balasubramanian, S., Giedroc, D. P. & Benkovic, S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalysed DNA strand transfer reactions and modulates RNase H activity. Biochemistry 33, 13817–13823 (1994).
    Article CAS Google Scholar
  20. Rodriguez-Rodriguez, L., Tsuchihashi, Z., Fuentes, G. M., Bambara, R. A. & Fay, P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J. Biol. Chem. 270, 15005–15011 (1995).
    Article CAS Google Scholar
  21. Allain, B., Lapadat-Tapolsky, M., Berlioz, C. & Darlix, J. -L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 13, 973–981 (1994).
    Article CAS Google Scholar
  22. Clodi, E., Semrad, K. & Schroeder, R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. 18, 3776–3782 (1999).
    Article CAS Google Scholar
  23. Tsuchihashi, Z. & Brown, P. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J. Virol. 68, 5863–5870 (1994).
    CAS PubMed Central Google Scholar
  24. Rein, A., Henderson, L. E. & Levin, J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem. Sci. 23, 297–301 (1998).
    Article CAS Google Scholar
  25. You, J. C. & McHenry, C. S. HIV nucleocapsid protein. J. Biol. Chem. 268, 16519–16527 (1993).
    CAS Google Scholar
  26. Negroni, M. & Buc, H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc. Natl Acad. Sci. USA 97, 6385–6390 (2000).
    Article CAS Google Scholar
  27. Jetzt, A. E. et al. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 74, 1234–1240 (2000).
    Article CAS Google Scholar
  28. Suo, Z. & Johnson, K. A. RNA secondary structure switching during DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry 36, 14778–14785 (1997).
    Article CAS Google Scholar
  29. Schierup, M. H. & Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891 (2000).
    CAS PubMed Central Google Scholar
  30. Zhang, J. & Temin, H. M. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259, 234–238 (1993).
    Article CAS Google Scholar
  31. Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990).
    Article CAS Google Scholar
  32. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).
    Article Google Scholar
  33. Xiong, Y. & Eickbush, T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9, 3353–3362 (1990).
    Article CAS Google Scholar
  34. Coffin, J. M. in Fields Virology (eds Fields, B. N. et al.) 1437–1500 (Raven Press, New York, 1990).
    Google Scholar
  35. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. & Steitz, T. A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256, 1783–1790 (1992).
    Article CAS Google Scholar
  36. Furfine, E. S. & Reardon, J. E. Reverse transcriptase. RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem. 266, 406–412 (1991).
    CAS Google Scholar
  37. Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl Acad. Sci. USA 90, 6320–6324 (1993).
    Article CAS Google Scholar
  38. Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).
    Article CAS Google Scholar
  39. Levin, H. L. It's prime time for reverse transcriptase. Cell 88, 5–8 (1997).
    Article CAS Google Scholar

Download references