Retroviral recombination: what drives the switch? (original) (raw)
References
Rein, A. Retroviral RNA packaging: a review. Arch. Virol. Suppl.9, 513–522 (1994). CAS Google Scholar
Gilboa, E., Mitra, S. W., Goff, S. & Baltimore, D. A detailed model of reverse transcription and tests of crucial aspects. Cell18, 93–100 (1979). ArticleCAS Google Scholar
Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997). Google Scholar
Goodrich, D. W. & Duesberg, P. H. Retroviral recombination during reverse transcription. Proc. Natl Acad. Sci. USA87, 2052–2056 (1990). ArticleCAS Google Scholar
Hu, W. S. & Temin, H. M. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl Acad. Sci. USA87, 1556–1560 (1990). ArticleCAS Google Scholar
Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol.42, 1–26 (1979). ArticleCAS Google Scholar
Elder, J. H. et al. Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc. Natl Acad. Sci. USA74, 4676–4680 (1977). ArticleCAS Google Scholar
Blair, D. G. Genetic recombination between avian leukosis and sarcoma viruses. Experimental variables and the frequencies of recombination. Virology77, 534–544 (1977). ArticleCAS Google Scholar
Sharp, P. M., Bailes, E., Robertson, D. L., Gao, F. & Hahn, B. H. Origins and evolution of AIDS viruses. Biol. Bull.196, 338–342 (1999). ArticleCAS Google Scholar
Peliska, J. A. & Benkovic, S. J. Mechanism of DNA strand transfer reactions catalysed by HIV-1 reverse transcriptase. Science258, 1112–1118 (1992). ArticleCAS Google Scholar
DeStefano, J. J., Mallaber, L. M., Rodriguez-Rodriguez, L., Fay, P. J. & Bambara, R. A. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J. Virol.66, 6370–6378 (1992). CASPubMed Central Google Scholar
DeStefano, J. J., Bambara, R. A. & Fay, P. J. The mechanism of human immunodeficiency virus reverse transcriptase-catalysed strand transfer from internal regions of heteropolymeric RNA templates. J. Biol. Chem.269, 161–168 (1994). CAS Google Scholar
Wu, W., Blumberg, B. M., Fay, P. J. & Bambara, R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J. Biol. Chem.270, 325–332 (1995). Article Google Scholar
Suo, Z. & Johnson, K. A. Effect of RNA secondary structure on the kinetics of DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry36, 12459–12467 (1997). ArticleCAS Google Scholar
Kim, J. K., Palaniappan, C., Wu, W., Fay, P. J. & Bambara, R. A. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J. Biol. Chem.272, 16769–16777 (1997). ArticleCAS Google Scholar
Darlix, J. L., Lapadat-Tapolsky, M., de Rocquigny, H. & Roques, B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol.254, 523–537 (1995). ArticleCAS Google Scholar
Negroni, M. & Buc, H. Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. J. Mol. Biol.286, 15–31 (1999). ArticleCAS Google Scholar
Guo, J., Henderson, L. E., Bess, J., Kane, B. & Levin, J. G. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J. Virol.71, 5178–5188 (1997). CASPubMed Central Google Scholar
Peliska, J. A., Balasubramanian, S., Giedroc, D. P. & Benkovic, S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalysed DNA strand transfer reactions and modulates RNase H activity. Biochemistry33, 13817–13823 (1994). ArticleCAS Google Scholar
Rodriguez-Rodriguez, L., Tsuchihashi, Z., Fuentes, G. M., Bambara, R. A. & Fay, P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J. Biol. Chem.270, 15005–15011 (1995). ArticleCAS Google Scholar
Allain, B., Lapadat-Tapolsky, M., Berlioz, C. & Darlix, J. -L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J.13, 973–981 (1994). ArticleCAS Google Scholar
Clodi, E., Semrad, K. & Schroeder, R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J.18, 3776–3782 (1999). ArticleCAS Google Scholar
Tsuchihashi, Z. & Brown, P. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J. Virol.68, 5863–5870 (1994). CASPubMed Central Google Scholar
Rein, A., Henderson, L. E. & Levin, J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem. Sci.23, 297–301 (1998). ArticleCAS Google Scholar
You, J. C. & McHenry, C. S. HIV nucleocapsid protein. J. Biol. Chem.268, 16519–16527 (1993). CAS Google Scholar
Negroni, M. & Buc, H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc. Natl Acad. Sci. USA97, 6385–6390 (2000). ArticleCAS Google Scholar
Jetzt, A. E. et al. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol.74, 1234–1240 (2000). ArticleCAS Google Scholar
Suo, Z. & Johnson, K. A. RNA secondary structure switching during DNA synthesis catalysed by HIV-1 reverse transcriptase. Biochemistry36, 14778–14785 (1997). ArticleCAS Google Scholar
Schierup, M. H. & Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics156, 879–891 (2000). CASPubMed Central Google Scholar
Zhang, J. & Temin, H. M. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science259, 234–238 (1993). ArticleCAS Google Scholar
Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature348, 454–455 (1990). ArticleCAS Google Scholar
Muller, H. J. The relation of recombination to mutational advance. Mutat. Res.1, 2–9 (1964). Article Google Scholar
Xiong, Y. & Eickbush, T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J.9, 3353–3362 (1990). ArticleCAS Google Scholar
Coffin, J. M. in Fields Virology (eds Fields, B. N. et al.) 1437–1500 (Raven Press, New York, 1990). Google Scholar
Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. & Steitz, T. A. Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science256, 1783–1790 (1992). ArticleCAS Google Scholar
Furfine, E. S. & Reardon, J. E. Reverse transcriptase. RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem.266, 406–412 (1991). CAS Google Scholar
Jacobo-Molina, A. et al. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl Acad. Sci. USA90, 6320–6324 (1993). ArticleCAS Google Scholar
Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science282, 1669–1675 (1998). ArticleCAS Google Scholar
Levin, H. L. It's prime time for reverse transcriptase. Cell88, 5–8 (1997). ArticleCAS Google Scholar