Parallel adaptive radiations in two major clades of placental mammals (original) (raw)
- Letter
- Published: 01 February 2001
- Mark Scally2,3 na1,
- Christophe J. Douady2,3,
- Diana J. Kao2,
- Ronald W. DeBry4,
- Ronald Adkins5,
- Heather M. Amrine2,6,
- Michael J. Stanhope3,7,
- Wilfried W. de Jong8,1 na1 &
- …
- Mark S. Springer2,6
Nature volume 409, pages 610–614 (2001)Cite this article
- 3497 Accesses
- 20 Altmetric
- Metrics details
Abstract
Higher level relationships among placental mammals, as well as the historical biogeography and morphological diversification of this group, remain unclear1,2,3. Here we analyse independent molecular data sets, having aligned lengths of DNA of 5,708 and 2,947 base pairs, respectively, for all orders of placental mammals. Phylogenetic analyses resolve placental orders into four groups: Xenarthra, Afrotheria, Laurasiatheria, and Euarchonta plus Glires. The first three groups are consistently monophyletic with different methods of analysis. Euarchonta plus Glires is monophyletic or paraphyletic depending on the phylogenetic method. A unique nine-base-pair deletion in exon 11 of the BRCA1 gene provides additional support for the monophyly of Afrotheria, which includes proboscideans, sirenians, hyracoids, tubulidentates, macroscelideans, chrysochlorids and tenrecids. Laurasiatheria contains cetartiodactyls, perissodactyls, carnivores, pangolins, bats and eulipotyphlan insectivores. Parallel adaptive radiations have occurred within Laurasiatheria and Afrotheria. In each group, there are aquatic, ungulate and insectivore-like forms.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Additional access options:
Similar content being viewed by others
References
- Novacek, M. J. Mammalian phylogeny: shaking the tree. Nature 356, 121–125 (1992).
Article ADS CAS Google Scholar - Shoshani, J. & McKenna, M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenet. Evol. 9, 572–584 (1998).
Article CAS Google Scholar - de Jong, W. W. Molecules remodel the mammalian tree. Trends Ecol. Evol. 13, 270–275 (1998).
Article CAS Google Scholar - Springer, M. S., Burk, A., Kavanagh, J. R., Waddell, V. G. & Stanhope, M. J. The interphotoreceptor retinoid binding protein gene in therian mammals: implications for higher level relationships and evidence for loss of function in the marsupial mole. Proc. Natl Acad. Sci. USA 94, 13754–13759 (1997).
Article ADS CAS Google Scholar - Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–64 (1997).
Article CAS Google Scholar - Stanhope, M. J. et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl Acad. Sci. USA 95, 9967–9972 (1998).
Article ADS CAS Google Scholar - Teeling, E. C. et al. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188–192 (2000).
Article ADS CAS Google Scholar - Asher, R. J. A morphological basis for assessing the phylogeny of the ‘Tenrecoidea’ (Mammalia, Lipotyphla). Cladistics 15, 231–252 (1999).
Google Scholar - Luckett, W. P. & Hartenberger, J.-L. Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations. J. Mammal. Evol. 1, 127–147 (1993).
Article Google Scholar - Waddell, P. J., Cao, Y., Hauf, J. & Hasegawa, M. Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-logdet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo and elephant. Syst. Biol. 48, 31–53 (1999).
Article CAS Google Scholar - Penny, D., Masegawa, M., Waddell, P. J. & Hendy, M. D. Mammalian evolution: Timing and implications from using the logdeterminant transform for proteins of differing amino acid composition. Syst. Biol. 48, 76–93 (1999).
Article CAS Google Scholar - McKenna, M. C. & Bell, S. K. Classification of Mammals Above the Species Level (Columbia Univ. Press, New York, 1997).
Google Scholar - Rainger, R. Agenda for Antiquity: Henry Fairfield Osborn and Vertebrate Paleontology at the American Museum of Natural History, 1890–1935 (Univ. Alabama Press, Tuscaloosa, Alabama, 1991).
Google Scholar - Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).
Article ADS CAS Google Scholar - Foote, M., Hunter, J. P., Janis, C. M. & Sepkoski, J. J. Jr Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals. Science 283, 1310–1314 (1999).
Article ADS CAS Google Scholar - Rich, T. H. et al. A tribosphenic mammal from the Mesozoic of Australia. Science 278, 1438–1442 (1997).
Article ADS CAS Google Scholar - Mouchaty, S. K., Gullberg, A., Janke, A. & Arnason, U. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 17, 60–67 (2000).
Article CAS Google Scholar - Waddell, P. J., Okada, N. & Hasegawa, M. Towards resolving the interordinal relationships of placental mammals. Syst. Biol. 48, 1–5 (1999).
Article CAS Google Scholar - Rasmussen, D. T. in The Evolution of Perissodactyls (eds Prothero, D. R. & Schoch, R. M.) 57–78 (Oxford Univ. Press, Oxford, 1989).
Google Scholar - Matthew, W. D. The Carnivora and Insectivora of the Bridger basin, middle Eocene. Mem. Am. Nat. Hist. 9, 291–567 (1909).
Google Scholar - Novacek, M. J. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull. Am. Mus. Nat. Hist. 183, 1–111 (1986).
Google Scholar - Easteal, S. Molecular evidence for the early divergence of placental mammals. BioEssays 21, 1052–1058 (1999).
Article CAS Google Scholar - Thompson, J. D., Higgins, G. D. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Article CAS Google Scholar - Swofford, D. L., Olsen, G. P., Waddell, P. J. & Hillis, D. M. in Molecular Systematics (eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–492 (Sinauer, Sunderland, Massachusetts, 1996).
Google Scholar - Krajewski, C., Blacket, M., Buckley, L. & Westerman, M. A multigene assessment of phylogenetic relationships within the dasyurid marsupial subfamily Sminthopsinae. Mol. Phylogenet. Evol. 8, 236–248 (1997).
Article CAS Google Scholar - Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4, (Sinauer, Sunderland, Massachusetts, 1998).
- Rambaut, A. & Grassly, N. C. Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 303–306 (1997).
CAS PubMed Google Scholar - Rambaut, A. & Bromham, L. Estimating divergence dates from molecular sequences. Mol. Biol. Evol. 15, 442–448 (1998).
Article CAS Google Scholar
Acknowledgements
We thank F. Catzeflis for tissue samples. This work was supported by the NSF (M.S.S.) and the TMR program of the European Commission (W.W.d.J.; M.J.S.).
Author information
Author notes
- Ole Madsen, Mark Scally and Wilfried W. de Jong: These authors contributed equally to this work
Authors and Affiliations
- Department of Biochemistry, University of Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
Ole Madsen & Wilfried W. de Jong - Department of Biology, University of California, Riverside, 92521, California, USA
Mark Scally, Christophe J. Douady, Diana J. Kao, Heather M. Amrine & Mark S. Springer - Queen's University of Belfast, Biology and Biochemistry, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom
Mark Scally, Christophe J. Douady & Michael J. Stanhope - Department of Biological Sciences, Box 210006, University of Cincinnati, Cincinnati, 45221, Ohio, USA
Ronald W. DeBry - Biology Department, University of Massachusetts, Amherst, 01003, Massachusetts, USA
Ronald Adkins - Graduate Group in Genetics, University of California, Riverside, 92521, California, USA
Heather M. Amrine & Mark S. Springer - Bioinformatics, SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, UP1345, Collegeville, 19426, Pennsylvania, USA
Michael J. Stanhope - Institute for Biodiversity and Ecosystem Dynamics, Amsterdam, 1090 GT, The Netherlands
Wilfried W. de Jong
Authors
- Ole Madsen
You can also search for this author inPubMed Google Scholar - Mark Scally
You can also search for this author inPubMed Google Scholar - Christophe J. Douady
You can also search for this author inPubMed Google Scholar - Diana J. Kao
You can also search for this author inPubMed Google Scholar - Ronald W. DeBry
You can also search for this author inPubMed Google Scholar - Ronald Adkins
You can also search for this author inPubMed Google Scholar - Heather M. Amrine
You can also search for this author inPubMed Google Scholar - Michael J. Stanhope
You can also search for this author inPubMed Google Scholar - Wilfried W. de Jong
You can also search for this author inPubMed Google Scholar - Mark S. Springer
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMark S. Springer.
Supplementary information
Rights and permissions
About this article
Cite this article
Madsen, O., Scally, M., Douady, C. et al. Parallel adaptive radiations in two major clades of placental mammals.Nature 409, 610–614 (2001). https://doi.org/10.1038/35054544
- Received: 30 August 2000
- Accepted: 10 October 2000
- Issue Date: 01 February 2001
- DOI: https://doi.org/10.1038/35054544