Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex (original) (raw)

References

  1. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1461 (1995).
    Article ADS CAS PubMed Google Scholar
  2. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).
    Article ADS CAS PubMed Google Scholar
  3. Clem, R. J., Fechheimer, M. & Miller, L. K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254, 1388–1390 (1991).
    Article ADS CAS PubMed Google Scholar
  4. Bump, N. J. et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885–1888 (1995).
    Article ADS CAS PubMed Google Scholar
  5. Xue, D. & Horvitz, H. R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248–251 (1995).
    Article ADS CAS PubMed Google Scholar
  6. Zhou, Q. et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 37, 10757–10765 (1998).
    Article CAS PubMed Google Scholar
  7. Ekert, P. G., Silke, J. & Vaux, D. L. Caspase inhibitors. Cell Death Differ. 6, 1081–1086 (1999).
    Article CAS PubMed Google Scholar
  8. Hay, B. A., Wolff, T. & Rubin, G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129 (1994).
    CAS PubMed Google Scholar
  9. White, K., Tahaoglu, E. & Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).
    Article ADS CAS PubMed Google Scholar
  10. Beidler, D. R., Tewari, M., Friesen, P. D., Poirier, G. & Dixit, V. M. The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270, 16526–16528 (1995).
    Article CAS PubMed Google Scholar
  11. Robertson, N. M. et al. Baculovirus P35 inhibits the glucocorticoid-mediated pathway of cell death. Cancer Res. 57, 43–47 (1997).
    CAS PubMed Google Scholar
  12. Hisahara, S. et al. Targeted expression of baculovirus p35 caspase inhibitor in oligodendrocytes protects mice against autoimmune-mediated demyelination. EMBO J. 19, 341–348 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  13. Fisher, A. J., Cruz, W., Zoog, S. J., Schneider, C. L. & Friesen, P. D. Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. EMBO J. 18, 2031–2039 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  14. Zoog, S. J., Bertin, J. & Friesen, P. D. Caspase inhibition by baculovirus P35 requires interaction between the reactive site loop and the beta-sheet core. J. Biol. Chem. 274, 25995–26002 (1999).
    Article CAS PubMed Google Scholar
  15. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).
    Google Scholar
  16. Bruice, T. C. & Benkovic, S. J. Bioorganic Mechanisms (Benjamin, New York, 1966).
    Google Scholar
  17. Owen, W. G., Penick, G. D., Yoder, E. & Poole, B. L. Evidence for an ester bond between thrombin and heparin cofactor. Thromb. Haemost. 35, 87–95 (1976).
    Article CAS PubMed Google Scholar
  18. Stennicke, H. R. & Salvesen, G. S. Catalytic properties of the caspases. Cell Death Differ. 6, 1054–1059 (1999).
    Article CAS PubMed Google Scholar
  19. Watt, W. et al. The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure Fold Des. 7, 1135–1143 (1999).
    Article CAS PubMed Google Scholar
  20. Blanchard, H. et al. The three-dimensional structure of caspase-8: an initiator enzyme in apoptosis. Structure Fold Des. 7, 1125–1133 (1999).
    Article CAS PubMed Google Scholar
  21. Bertin, J. et al. Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J. Virol. 70, 6251–6259 (1996).
    CAS PubMed PubMed Central Google Scholar
  22. Bode, W. & Huber, R. Structural basis of the endoproteinase–protein inhibitor interaction. Biochim. Biophys. Acta 1477, 241–252 (2000).
    Article CAS PubMed Google Scholar
  23. Wright, H. T. & Scarsdale, J. N. Structural basis for serpin inhibitor activity. Proteins 22, 210–225 (1995).
    Article CAS PubMed Google Scholar
  24. Huntington, J. A., Read, R. J. & Carrell, R. W. Structure of a serpin–protease complex shows inhibition by deformation. Nature 407, 923–926 (2000).
    Article ADS CAS PubMed Google Scholar
  25. Tong, L. REPLACE, a suite of computer programs for molecular-replacement calculations. J. Appl. Cryst. 26, 748–751 (1993).
    Article Google Scholar
  26. Jones, T. A., Zou, J. -Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in those models. Acta Crystallogr. A 47, 110–119 (1991).
    Article PubMed Google Scholar
  27. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS PubMed Google Scholar
  28. Park, Y. C. et al. A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD–TRAF2 interaction. Cell 101, 777–787 (2000).
    Article CAS PubMed Google Scholar
  29. Myszka, D. G. Improving biosensor analysis. Mol. Recogn. 12, 1–6 (1999).
    Article Google Scholar
  30. Myszka, D. G. & Morton, T. A. CLAMP: a biosensor kinetic data analysis program. Trends Biochem. Sci. 23, 149–150 (1998).
    Article CAS PubMed Google Scholar

Download references