Primate anterior cingulate cortex: Where motor control, drive and cognition interface (original) (raw)
References
Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex6, 207–214 (1996). CASPubMed Google Scholar
Ide, A. et al. Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J. Comp. Neurol.410, 235–242 ( 1999). CASPubMed Google Scholar
Yucel, M. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex11, 17 –25 (2001). CASPubMed Google Scholar
Paus, T. et al. In-vivo morphometry of the intrasulcal gray-matter in the human cingulate, paracingulate and superior-rostral sulci: hemispheric asymmetries and gender differences. J. Comp. Neurol.376, 664–673 (1996). CASPubMed Google Scholar
Crosson, B. et al. Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb. Cortex9, 307–316 ( 1999). CASPubMed Google Scholar
Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol.286, 353–375 ( 1989).An evolutionary perspective on cyto- and myelo-architecture and cortico–cortical connectivity of the monkey prefrontal cortex, including the cingulate cortex. CASPubMed Google Scholar
Barbas, H. in The Association Cortex: Structure and Function (eds Sakata, H., Mikami, A. & Fuster, J.) 99–116 (Harwood Academic, Amsterdam, 1997). Google Scholar
Bates, J. F. & Goldman-Rakic, P. S. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol.336, 211–228 (1993). CASPubMed Google Scholar
Morecraft, R. J. & Van Hoesen, G. W. Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J. Comp. Neurol.337, 669–689 (1993). CASPubMed Google Scholar
Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex6, 342–353 ( 1996). CASPubMed Google Scholar
Dum, R. P. & Strick, P. L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci.11, 667–689 (1991). A landmark study on the organization of corticospinal projections in the monkey lateral and medial frontal cortex. CASPubMedPubMed Central Google Scholar
Morecraft, R. J. & Van Hoesen, G. W. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J. Comp. Neurol.322, 471–489 ( 1992). CASPubMed Google Scholar
An, X., Bandler, R., Ongur, D. & Price, J. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal grey in macaque monkeys. J. Comp. Neurol.401, 455 –479 (1998). CASPubMed Google Scholar
Morecraft, R. J., Geula, C. & Mesulam, M. M. Architecture of connectivity within a cingulo–fronto–parietal neurocognitive network for directed attention. Arch. Neurol.50, 279–284 (1993). CASPubMed Google Scholar
Müller-Preuss, P. & Jürgens, U. Projections from the 'cingular' vocalization area in the squirrel monkey. Brain Res.103, 29–43 ( 1976). PubMed Google Scholar
Jürgens, U. Projections from the cortical larynx area in the squirrel monkey. Exp. Brain Res.25, 401–411 (1976). PubMed Google Scholar
Jürgens, U. Afferent fibers to the cingular vocalization region in the squirrel monkey . Exp. Neurol.80, 395– 409 (1983). PubMed Google Scholar
Vogt, B. A. & Barbas, H. in The Physiological Control of Mammalian Vocalization (ed. Newman, J. D.) 203–225 (Plenum,New York, 1988).
Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol.410, 343–367 (1999). CASPubMed Google Scholar
Barbas, H. & De Olmos, J. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J. Comp. Neurol.301, 1–23 (1990). Google Scholar
Kunishio, K. & Haber, S. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J. Comp. Neurol.350, 337–356 ( 1994). CASPubMed Google Scholar
Morecraft, R. J. & Van Hoesen, G. W. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res. Bull.45, 209–232 (1998).An account of the intrinsic connectivity of the dorsal and ventral tiers of the monkey cingulate cortex. CASPubMed Google Scholar
Barbas, H., Henion, T. H. & Dermon, C. R. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol.313, 65–94 (1991). CASPubMed Google Scholar
Montaron, M.-F. & Buser, P. Relationships between nucleus medialis dorsalis, pericruciate cortex, ventral tegmental area and nucleus accumbens in cat: an electrophysiological study. Exp. Brain Res.69, 559–566 ( 1988). CASPubMed Google Scholar
Berger, B. in Advances in Neurology Vol. 57 (eds Chauvel, P. & Delgado-Escueta, A. V.) 525–544 (Raven, New York, 1992).Comparative neurochemical analysis of the frontal cortex, with special emphasis on the dopamine innervation of the primary motor cortex, lateral prefrontal cortex and the anterior cingulate cortex. Google Scholar
Crino, P. B., Morrison, J. H. & Hof, P. R. in Neurobiology of Cingulate Cortex and Limbic Thalamus: a Comprehensive Handbook (eds Vogt, B. A. & Gabriel, M.) 285 –299 (Birkhäuser, Boston, 1993 ). Google Scholar
Gaspar, P., Berger, B., Febvret, A., Vigny, A. & Henry, J. P. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-β-hydroxylase. J. Comp. Neurol.279, 249–271 (1989).The first systematic account of the regional and laminar distribution of catecholamine-mediated innervation of the human cerebral cortex. CASPubMed Google Scholar
Lewis, D. A. The catecholaminergic innervation of primate prefrontal cortex. J. Neural Transm.36, 179–200 (1992). CAS Google Scholar
Berger, B., Trottier, S., Verney, C., Gaspar, P. & Alvarez, C. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study . J. Comp. Neurol.273, 99– 119 (1988). CASPubMed Google Scholar
Lewis, D. A., Foote, S. L. & Cha, C. I. Corticotropin-releasing factor immunoreactivity in monkey neocortex: an immunohistochemical analysis. J. Comp. Neurol.290, 599–613 (1989). CASPubMed Google Scholar
Campbell, M. J., Lewis, D. A., Benoit, R. & Morrison, J. H. Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex. J. Neurosci.7, 1133–1144 (1987). CASPubMedPubMed Central Google Scholar
Gaspar, P., Berger, B. & Febvret, A. Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines. Brain Res.530, 181–195 (1990). CASPubMed Google Scholar
Satoh, K. & Matsumura, H. Distribution of neurotensin-containing fibers in the frontal cortex of the macaque monkey. J. Comp. Neurol.298, 215–223 ( 1990). CASPubMed Google Scholar
Iritani, S., Fujii, M. & Satoh K. The distribution of substance P in the cerebral cortex and hippocampal formation: an immunohistochemical study in the monkey and rat. Brain Res. Bull.22, 295–303 ( 1989). CASPubMed Google Scholar
Showers, M. J. C. The cingulate gyrus: additional motor area and cortical autonomic regulator . J. Comp. Neurol.112, 231– 287 (1959). CASPubMed Google Scholar
Hughes, J. R. & Mazurowski, J. A. Studies of the supracallosal mesial cortex of unanaesthetized, conscious mammals. II. Monkey. A. Movements elicited by electrical stimulation. Electroencephalogr. Clin. Neurophysiol.14, 477–485 ( 1962). CASPubMed Google Scholar
Penfield, W. & Welch, K. The supplementary motor area of the cerebral cortex. A clinical and experimental study. Arch. Neurol. Psychiatry (Lond.)66, 289–317 (1951). CAS Google Scholar
Talairach, J. & Bancaud, J. The supplementary motor area in man. Int. J. Neurol.5, 330– 347 (1966). Google Scholar
Luppino, G., Matelli, M., Camarda, R. M., Gallese, V. & Rizzolatti, G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J. Comp. Neurol.311, 463–482 ( 1991).The first microstimulation study of cingulate motor areas in the macaque monkey. CASPubMed Google Scholar
Shima, K. et al. Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J. Neurophysiol.65, 188–202 ( 1991).The first demonstration of functional specialization of the rostral and caudal cingulate motor areas in the monkey. CASPubMed Google Scholar
Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science282, 1335–1338 (1998). CASPubMed Google Scholar
Procyk, E., Tanaka, Y. L. & Joseph, J. P. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neurosci.3, 502–508 (2000). CASPubMed Google Scholar
Wu, C. W., Bichot, N. P. & Kaas, J. H. Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J. Comp. Neurol.423, 140–177 (2000).A striking demonstration of similarities in the organization of cortical motor areas between prosimians and monkeys. CASPubMed Google Scholar
Kaada, B. in Neurophysiology Vol. II (eds Field, J., Magoun, H. & Hall, V.) 1345–1372 (American Physiological Society, Washington DC, 1960). Google Scholar
Jürgens, U. & Plog, D. Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res.10, 532–554 (1970). PubMed Google Scholar
Müller-Preuss, P., Newman, J. D. & Jürgens, U. Anatomical and physiological evidence for a relationship between the 'cingular' vocalization area and the auditory cortex in the squirrel monkey. Brain Res.202, 307– 315 (1980). PubMed Google Scholar
Gooler, D. M. & O'Neill, W. E. Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli. J. Comp. Physiol. A161, 283–294 (1987). CASPubMed Google Scholar
Paus, T., Petrides, M., Evans, A. C. & Meyer, E. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J. Neurophysiol.70, 453–469 (1993). CASPubMed Google Scholar
Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988). Google Scholar
Paus, T., Koski, L., Caramanos, Z. & Westbury, C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies . Neuroreport9, R37–47 (1998). Google Scholar
Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl Acad. Sci. USA87, 256–259 (1990). CASPubMedPubMed Central Google Scholar
Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci.11, 2383–2402 (1991). CASPubMedPubMed Central Google Scholar
Frith, C. D. Friston, K., Liddle, P. F. & Frackowiak, R. S. Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B244, 241–246 (1991). CAS Google Scholar
Koski, L. & Paus, T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis . Exp. Brain Res.133, 55– 65 (2000). CASPubMed Google Scholar
Simpson, J. R., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex. I. During cognitive task performance. Proc. Natl Acad. Sci. USA98, 683–687 (2001). CASPubMedPubMed Central Google Scholar
Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex. II. During anticipatory anxiety. Proc. Natl Acad. Sci. USA98, 688–693 (2001). CASPubMedPubMed Central Google Scholar
Paus, T., Castro-Alamancos, M. & Petrides, M. Cortico–cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation: a combined TMS/PET study. Neuroimage11, S765 (2000). Google Scholar
Falkenstein, M., Hohnsbein, J., Hoorman, J. & Blanke, L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol.78, 447–455 (1991). CASPubMed Google Scholar
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. A neural system for error detection and compensation. Psychol. Sci.4, 385– 390 (1993). Google Scholar
Deheane, S., Posner, M. I. & Tucker, D. M. Localization of a neural system for error detection and compensation. Psychol. Sci.5, 303– 305 (1994). Google Scholar
Vidal, F., Hasbroucq, T., Grapperon, J. & Bonnet, M. Is the 'error negativity' specific to errors? Biol. Psychol.51, 109–128 (2000). CASPubMed Google Scholar
Tucker, D. M., Hartry-Speiser, A., McDougal, L., Luu, P. & deGrandpre, D. Mood and spatial memory: emotion and right hemisphere contribution to spatial cognition. Biol. Psychol.50, 103–125 ( 1999). CASPubMed Google Scholar
Luu, P., Collins, P. & Tucker, D. M. Mood, personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring . J. Exp. Psychol. Gen.129, 43– 60 (2000). PubMed Google Scholar
Gehring, W. J. & Knight, R. T. Prefrontal–cingulate interactions in action monitoring. Nature Neurosci.3, 516–520 (2000). A critical demonstration of the contribution of the lateral prefrontal cortex in the generation of error-related negativity. CASPubMed Google Scholar
Aston-Jones, G., Rajkowski, J. & Cohen, J. Locus coeruleus and regulation of behavioural flexibility and attention. Prog. Brain Res.126, 165 –182 (2000). CASPubMed Google Scholar
Swick, D., Pineda, J. A., Schacher, S. & Foote, S. L. Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res.101, 86–92 (1994). CASPubMed Google Scholar
Carter, C. S., Botvinick, M. M. & Cohen, J. D. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci.10, 49–57 (1999). CASPubMed Google Scholar
Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science280, 747–749 (1998). CASPubMed Google Scholar
Carter, C. S. et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA97, 1944–1948 (2000). CASPubMedPubMed Central Google Scholar
Milham, M. et al. Activity of cingulate-based attentional system in the Stroop task is dependent upon response eligibility: a hybrid blocked/event-related fMRI design. Neuroimage6, S751 ( 1999).
MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science288, 1835–1838 (2000). An fMRI study of task preparation and execution, which provides the first functional evidence for differential engagement of the lateral prefrontal cortex and the anterior cingulate cortex during the performance of the Stroop task. CASPubMed Google Scholar
Banich, M. T. et al. Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Res. Cogn. Brain Res.10, 1–9 (2000 ). CASPubMed Google Scholar
Paus, T. et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci.9, 392–408 (1997). CASPubMed Google Scholar
Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle wave activity during slow wave sleep in humans. J. Neurosci.17, 4800–4808 ( 1997). CASPubMedPubMed Central Google Scholar
Fiset, P. et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a PET study. J. Neurosci.19, 5506 –5513 (1999). CASPubMedPubMed Central Google Scholar
Paus, T. Functional anatomy of arousal and attention systems in the human brain. Prog. Brain Res.126, 65–77 (2000). CASPubMed Google Scholar
Thierry, A.-M., Godbout, R., Mantz, J. & Glowinski, J. Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex. Prog. Brain Res.85, 355– 363 (1990). Google Scholar
Deutch, A. Y. & Roth, R. H. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res.85, 365–401 ( 1990).An excellent and still timely review of neurotransmitters and neuromodulators involved in the cortical response to stress. Google Scholar
Bertolucci-D'Angio, M., Serrano, A., Driscoll, P. & Scatton, B. Involvement of mesocorticolimbic dopaminergic systems in emotional states . Prog. Brain Res.85, 405– 417 (1990). CASPubMed Google Scholar
Grasby, P. M. et al. The effect of the dopamine agonist, apomorphine, on regional cerebral blood flow in normal volunteers. Psychol. Med.23, 605–612 (1993). CASPubMed Google Scholar
Kapur, S., Meyer, J., Wilson, A. A., Houle, S. & Brown, G. M. Activation of specific cortical regions by apomorphine: an [15O]H2O PET study in humans. Neurosci. Lett.176, 21–24 ( 1994). CASPubMed Google Scholar
Bartlett, E. J. et al. Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects. Am. J. Psychiatry151, 681–686 (1994). CASPubMed Google Scholar
Paus, T. et al. Alpha-methyl-para-tyrosine (AMPT) attenuates task-specific CBF changes in the human anterior cingulate cortex. Soc. Neurosci. Abstr.20, 353 (1994). Google Scholar
Barris, R. W. & Schuman, H. R. Bilateral anterior cingulate gyrus lesions. Syndrome of the anterior cingulate gyri. Neurology3, 44–52 (1953 ). CASPubMed Google Scholar
Laplane, D., Degos, J. D., Maulac, M. & Gray, F. Bilateral infarctions of the anterior cingulate gyri and of the fornices. J. Neurol. Sci.51, 289–300 ( 1981). CASPubMed Google Scholar
Nielsen, J. M. & Jacobs, L. L. Bilateral lesions of the anterior cingulate gyri. Report of case. Bull. Los Angeles Neurol. Soc.16, 231–234 (1951). CASPubMed Google Scholar
Buge, A., Escourolle, R., Rancurel, G. & Poisson, M. Mutisme akinétique et ramollissement bicingulaire. 3 observations anatomo-cliniques . Rev. Neurol. (Paris)131, 121– 137 (1975). CAS Google Scholar
Németh, G., Hegedüs, K. & Molnár, L. Akinetic mutism associated with bicingular lesions: clinicopathological and functional anatomical correlates. Eur. Arch. Psychiatry Neurol. Sci.237, 218– 222 (1988). PubMed Google Scholar
Laplane, D., Talairach, J., Meininger, V., Bancaud, J. & Orgogozo, J. M. Clinical consequences of corticectomies involving the supplementary motor area in man. J. Neurol. Sci.34, 301–314 ( 1977). CASPubMed Google Scholar
Jürgens, U. & Von Cramon, D. On the role of the anterior cingulate cortex in phonation: a case report. Brain Lang.15, 234–248 (1982). PubMed Google Scholar
Shahani, B., Burrows, P. & Whitty, C. W. M. The grasp reflex and perseveration. Brain93, 181–192 ( 1970). CASPubMed Google Scholar
De Renzi, E. & Babieri, C. The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain115, 293–313 ( 1992). PubMed Google Scholar
Hashimoto, R. & Tanaka, Y. Contribution of the supplementary motor area and anterior cingulate gyrus to pathological grasping phenomena . Eur. Neurol.40, 151– 158 (1998). CASPubMed Google Scholar
Banks, G. et al. The alien hand syndrome. Clinical and postmortem findings. Arch. Neurol.46, 456–459 (1989). CASPubMed Google Scholar
Goldberg, G., Mayer, N. H. & Toglia, J. U. Medial frontal cortex infarction and the alien hand sign. Arch. Neurol.38, 683– 686 (1981). CASPubMed Google Scholar
Gaymard, B. et al. Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp. Brain Res.120, 173– 183 (1998). CASPubMed Google Scholar
Paus, T. et al. Medial vs. lateral frontal lobe lesions and differential impairment of central gaze fixation maintenance in man. Brain114, 2051–2067 (1991). PubMed Google Scholar
Stephan, K. M. et al. The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain122, 351–368 (1999). PubMed Google Scholar
Turken, A. U. & Swick, D. Response selection in the human anterior cingulate cortex. Nature Neurosci.2, 920 –924 (1999).An important demonstration of cognitive impairment circumscribed to a single response modality. CASPubMed Google Scholar
Sutton, D., Larson, C. & Lindeman, R. C. Neocortical and limbic lesion effects on primate phonation. Brain Res.71, 61– 75 (1974). CASPubMed Google Scholar
Sutton, D., Trachy, R. E. & Lindeman, R. C. Primate phonation: unilateral and bilateral cingulate lesion effects. Behav. Brain Res.3, 99– 114 (1981). CASPubMed Google Scholar
Aitken, P. G. Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys . Brain Lang.13, 171–184 (1981).An analysis of self-initiated vocalization in monkeys with lesions to the anterior cingulate cortex and to the areas homologous to Broca's and Wernicke's on the convexity of the frontal lobes. CASPubMed Google Scholar
MacLean, P. D. & Newman, J. D. Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys . Brain Res.450, 111–123 (1988). CASPubMed Google Scholar
Pribram, K. H., Wilson, W. A. Jr & Connors, J. Effects of lesions of the medial forebrain on alternation behavior of rhesus monkeys. Exp. Neurol.6, 36–47 (1962). CASPubMed Google Scholar
Gabriel, M. Functions of anterior and posterior cingulate cortex during avoidance learning in rabbits. Prog. Brain Res.85, 465– 481 (1990). Google Scholar
Raichle, M. E. et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex4, 8–26 (1994). CASPubMed Google Scholar
Glowinski, J. in Monoamine Innervation of Cerebral Cortex (eds Descarries, L., Reader, T. R. & Jasper, H. H.) 229–231 (Alan R. Liss, New York, 1984). Google Scholar
Ross, E. D. & Stewart, R. M. Akinetic mutism from hypothalamic damage: successful treatment with dopamine agonists. Neurology31, 1435–1439 ( 1981).A case study of the putative loss of dopamine-mediated modulation of the anterior cingulate cortex owing to a lesion of the anterior hypothalamus that also involved the medial forebrain bundle. CASPubMed Google Scholar
Sarkissov, S., Filimonoff, J., Kononova, E., Preobraschenskaja, I. & Kukuew, L. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medzig, Moscow, 1955). Google Scholar
Vogt, B. A., Nimchinsky, E. A., Vogt. L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture . J. Comp. Neurol.359, 490– 506 (1995).Systematic study of the cingulate cytoarchitecture and its relationship to the sulcal pattern in the human brain. CASPubMed Google Scholar