Primate anterior cingulate cortex: Where motor control, drive and cognition interface (original) (raw)

References

  1. Paus, T. et al. Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. Cereb. Cortex 6, 207–214 (1996).
    CAS PubMed Google Scholar
  2. Ide, A. et al. Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J. Comp. Neurol. 410, 235–242 ( 1999).
    CAS PubMed Google Scholar
  3. Yucel, M. et al. Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. Cereb. Cortex 11, 17 –25 (2001).
    CAS PubMed Google Scholar
  4. Paus, T. et al. In-vivo morphometry of the intrasulcal gray-matter in the human cingulate, paracingulate and superior-rostral sulci: hemispheric asymmetries and gender differences. J. Comp. Neurol. 376, 664–673 (1996).
    CAS PubMed Google Scholar
  5. Crosson, B. et al. Activity in the paracingulate and cingulate sulci during word generation: an fMRI study of functional anatomy. Cereb. Cortex 9, 307–316 ( 1999).
    CAS PubMed Google Scholar
  6. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 ( 1989).An evolutionary perspective on cyto- and myelo-architecture and cortico–cortical connectivity of the monkey prefrontal cortex, including the cingulate cortex.
    CAS PubMed Google Scholar
  7. Barbas, H. in The Association Cortex: Structure and Function (eds Sakata, H., Mikami, A. & Fuster, J.) 99–116 (Harwood Academic, Amsterdam, 1997).
    Google Scholar
  8. Bates, J. F. & Goldman-Rakic, P. S. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 336, 211–228 (1993).
    CAS PubMed Google Scholar
  9. Morecraft, R. J. & Van Hoesen, G. W. Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J. Comp. Neurol. 337, 669–689 (1993).
    CAS PubMed Google Scholar
  10. Picard, N. & Strick, P. L. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6, 342–353 ( 1996).
    CAS PubMed Google Scholar
  11. Dum, R. P. & Strick, P. L. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 11, 667–689 (1991). A landmark study on the organization of corticospinal projections in the monkey lateral and medial frontal cortex.
    CAS PubMed PubMed Central Google Scholar
  12. Morecraft, R. J. & Van Hoesen, G. W. Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J. Comp. Neurol. 322, 471–489 ( 1992).
    CAS PubMed Google Scholar
  13. An, X., Bandler, R., Ongur, D. & Price, J. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal grey in macaque monkeys. J. Comp. Neurol. 401, 455 –479 (1998).
    CAS PubMed Google Scholar
  14. Morecraft, R. J., Geula, C. & Mesulam, M. M. Architecture of connectivity within a cingulo–fronto–parietal neurocognitive network for directed attention. Arch. Neurol. 50, 279–284 (1993).
    CAS PubMed Google Scholar
  15. Müller-Preuss, P. & Jürgens, U. Projections from the 'cingular' vocalization area in the squirrel monkey. Brain Res. 103, 29–43 ( 1976).
    PubMed Google Scholar
  16. Jürgens, U. Projections from the cortical larynx area in the squirrel monkey. Exp. Brain Res. 25, 401–411 (1976).
    PubMed Google Scholar
  17. Jürgens, U. Afferent fibers to the cingular vocalization region in the squirrel monkey . Exp. Neurol. 80, 395– 409 (1983).
    PubMed Google Scholar
  18. Vogt, B. A. & Barbas, H. in The Physiological Control of Mammalian Vocalization (ed. Newman, J. D.) 203–225 (Plenum,New York, 1988).
  19. Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol. 410, 343–367 (1999).
    CAS PubMed Google Scholar
  20. Barbas, H. & De Olmos, J. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J. Comp. Neurol. 301, 1–23 (1990).
    Google Scholar
  21. Kunishio, K. & Haber, S. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J. Comp. Neurol. 350, 337–356 ( 1994).
    CAS PubMed Google Scholar
  22. Morecraft, R. J. & Van Hoesen, G. W. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res. Bull. 45, 209–232 (1998).An account of the intrinsic connectivity of the dorsal and ventral tiers of the monkey cingulate cortex.
    CAS PubMed Google Scholar
  23. Barbas, H., Henion, T. H. & Dermon, C. R. Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 313, 65–94 (1991).
    CAS PubMed Google Scholar
  24. Montaron, M.-F. & Buser, P. Relationships between nucleus medialis dorsalis, pericruciate cortex, ventral tegmental area and nucleus accumbens in cat: an electrophysiological study. Exp. Brain Res. 69, 559–566 ( 1988).
    CAS PubMed Google Scholar
  25. Berger, B. in Advances in Neurology Vol. 57 (eds Chauvel, P. & Delgado-Escueta, A. V.) 525–544 (Raven, New York, 1992).Comparative neurochemical analysis of the frontal cortex, with special emphasis on the dopamine innervation of the primary motor cortex, lateral prefrontal cortex and the anterior cingulate cortex.
    Google Scholar
  26. Crino, P. B., Morrison, J. H. & Hof, P. R. in Neurobiology of Cingulate Cortex and Limbic Thalamus: a Comprehensive Handbook (eds Vogt, B. A. & Gabriel, M.) 285 –299 (Birkhäuser, Boston, 1993 ).
    Google Scholar
  27. Gaspar, P., Berger, B., Febvret, A., Vigny, A. & Henry, J. P. Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-β-hydroxylase. J. Comp. Neurol. 279, 249–271 (1989).The first systematic account of the regional and laminar distribution of catecholamine-mediated innervation of the human cerebral cortex.
    CAS PubMed Google Scholar
  28. Lewis, D. A. The catecholaminergic innervation of primate prefrontal cortex. J. Neural Transm. 36, 179–200 (1992).
    CAS Google Scholar
  29. Berger, B., Trottier, S., Verney, C., Gaspar, P. & Alvarez, C. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study . J. Comp. Neurol. 273, 99– 119 (1988).
    CAS PubMed Google Scholar
  30. Lewis, D. A., Foote, S. L. & Cha, C. I. Corticotropin-releasing factor immunoreactivity in monkey neocortex: an immunohistochemical analysis. J. Comp. Neurol. 290, 599–613 (1989).
    CAS PubMed Google Scholar
  31. Campbell, M. J., Lewis, D. A., Benoit, R. & Morrison, J. H. Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex. J. Neurosci. 7, 1133–1144 (1987).
    CAS PubMed PubMed Central Google Scholar
  32. Gaspar, P., Berger, B. & Febvret, A. Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines. Brain Res. 530, 181–195 (1990).
    CAS PubMed Google Scholar
  33. Satoh, K. & Matsumura, H. Distribution of neurotensin-containing fibers in the frontal cortex of the macaque monkey. J. Comp. Neurol. 298, 215–223 ( 1990).
    CAS PubMed Google Scholar
  34. Iritani, S., Fujii, M. & Satoh K. The distribution of substance P in the cerebral cortex and hippocampal formation: an immunohistochemical study in the monkey and rat. Brain Res. Bull. 22, 295–303 ( 1989).
    CAS PubMed Google Scholar
  35. Showers, M. J. C. The cingulate gyrus: additional motor area and cortical autonomic regulator . J. Comp. Neurol. 112, 231– 287 (1959).
    CAS PubMed Google Scholar
  36. Hughes, J. R. & Mazurowski, J. A. Studies of the supracallosal mesial cortex of unanaesthetized, conscious mammals. II. Monkey. A. Movements elicited by electrical stimulation. Electroencephalogr. Clin. Neurophysiol. 14, 477–485 ( 1962).
    CAS PubMed Google Scholar
  37. Penfield, W. & Welch, K. The supplementary motor area of the cerebral cortex. A clinical and experimental study. Arch. Neurol. Psychiatry (Lond.) 66, 289–317 (1951).
    CAS Google Scholar
  38. Talairach, J. & Bancaud, J. The supplementary motor area in man. Int. J. Neurol. 5, 330– 347 (1966).
    Google Scholar
  39. Luppino, G., Matelli, M., Camarda, R. M., Gallese, V. & Rizzolatti, G. Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J. Comp. Neurol. 311, 463–482 ( 1991).The first microstimulation study of cingulate motor areas in the macaque monkey.
    CAS PubMed Google Scholar
  40. Shima, K. et al. Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J. Neurophysiol. 65, 188–202 ( 1991).The first demonstration of functional specialization of the rostral and caudal cingulate motor areas in the monkey.
    CAS PubMed Google Scholar
  41. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).
    CAS PubMed Google Scholar
  42. Procyk, E., Tanaka, Y. L. & Joseph, J. P. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature Neurosci. 3, 502–508 (2000).
    CAS PubMed Google Scholar
  43. Wu, C. W., Bichot, N. P. & Kaas, J. H. Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J. Comp. Neurol. 423, 140–177 (2000).A striking demonstration of similarities in the organization of cortical motor areas between prosimians and monkeys.
    CAS PubMed Google Scholar
  44. Kaada, B. in Neurophysiology Vol. II (eds Field, J., Magoun, H. & Hall, V.) 1345–1372 (American Physiological Society, Washington DC, 1960).
    Google Scholar
  45. Jürgens, U. & Plog, D. Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res. 10, 532–554 (1970).
    PubMed Google Scholar
  46. Müller-Preuss, P., Newman, J. D. & Jürgens, U. Anatomical and physiological evidence for a relationship between the 'cingular' vocalization area and the auditory cortex in the squirrel monkey. Brain Res. 202, 307– 315 (1980).
    PubMed Google Scholar
  47. Gooler, D. M. & O'Neill, W. E. Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli. J. Comp. Physiol. A 161, 283–294 (1987).
    CAS PubMed Google Scholar
  48. Paus, T., Petrides, M., Evans, A. C. & Meyer, E. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J. Neurophysiol. 70, 453–469 (1993).
    CAS PubMed Google Scholar
  49. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical, New York, 1988).
    Google Scholar
  50. Paus, T., Koski, L., Caramanos, Z. & Westbury, C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies . Neuroreport 9, R37–47 (1998).
    Google Scholar
  51. Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proc. Natl Acad. Sci. USA 87, 256–259 (1990).
    CAS PubMed PubMed Central Google Scholar
  52. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).
    CAS PubMed PubMed Central Google Scholar
  53. Frith, C. D. Friston, K., Liddle, P. F. & Frackowiak, R. S. Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244, 241–246 (1991).
    CAS Google Scholar
  54. Koski, L. & Paus, T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis . Exp. Brain Res. 133, 55– 65 (2000).
    CAS PubMed Google Scholar
  55. Simpson, J. R., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex. I. During cognitive task performance. Proc. Natl Acad. Sci. USA 98, 683–687 (2001).
    CAS PubMed PubMed Central Google Scholar
  56. Simpson, J. R., Drevets, W. C., Snyder, A. Z., Gusnard, D. A. & Raichle, M. E. Emotion-induced changes in human medial prefrontal cortex. II. During anticipatory anxiety. Proc. Natl Acad. Sci. USA 98, 688–693 (2001).
    CAS PubMed PubMed Central Google Scholar
  57. Paus, T., Castro-Alamancos, M. & Petrides, M. Cortico–cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation: a combined TMS/PET study. Neuroimage 11, S765 (2000).
    Google Scholar
  58. Falkenstein, M., Hohnsbein, J., Hoorman, J. & Blanke, L. Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin. Neurophysiol. 78, 447–455 (1991).
    CAS PubMed Google Scholar
  59. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E. & Donchin, E. A neural system for error detection and compensation. Psychol. Sci. 4, 385– 390 (1993).
    Google Scholar
  60. Deheane, S., Posner, M. I. & Tucker, D. M. Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303– 305 (1994).
    Google Scholar
  61. Vidal, F., Hasbroucq, T., Grapperon, J. & Bonnet, M. Is the 'error negativity' specific to errors? Biol. Psychol. 51, 109–128 (2000).
    CAS PubMed Google Scholar
  62. Tucker, D. M., Hartry-Speiser, A., McDougal, L., Luu, P. & deGrandpre, D. Mood and spatial memory: emotion and right hemisphere contribution to spatial cognition. Biol. Psychol. 50, 103–125 ( 1999).
    CAS PubMed Google Scholar
  63. Luu, P., Collins, P. & Tucker, D. M. Mood, personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring . J. Exp. Psychol. Gen. 129, 43– 60 (2000).
    PubMed Google Scholar
  64. Gehring, W. J. & Knight, R. T. Prefrontal–cingulate interactions in action monitoring. Nature Neurosci. 3, 516–520 (2000). A critical demonstration of the contribution of the lateral prefrontal cortex in the generation of error-related negativity.
    CAS PubMed Google Scholar
  65. Aston-Jones, G., Rajkowski, J. & Cohen, J. Locus coeruleus and regulation of behavioural flexibility and attention. Prog. Brain Res. 126, 165 –182 (2000).
    CAS PubMed Google Scholar
  66. Swick, D., Pineda, J. A., Schacher, S. & Foote, S. L. Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res. 101, 86–92 (1994).
    CAS PubMed Google Scholar
  67. Carter, C. S., Botvinick, M. M. & Cohen, J. D. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10, 49–57 (1999).
    CAS PubMed Google Scholar
  68. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).
    CAS PubMed Google Scholar
  69. Carter, C. S. et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 97, 1944–1948 (2000).
    CAS PubMed PubMed Central Google Scholar
  70. Milham, M. et al. Activity of cingulate-based attentional system in the Stroop task is dependent upon response eligibility: a hybrid blocked/event-related fMRI design. Neuroimage 6, S751 ( 1999).
  71. MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000). An fMRI study of task preparation and execution, which provides the first functional evidence for differential engagement of the lateral prefrontal cortex and the anterior cingulate cortex during the performance of the Stroop task.
    CAS PubMed Google Scholar
  72. Banich, M. T. et al. Prefrontal regions play a predominant role in imposing an attentional 'set': evidence from fMRI. Brain Res. Cogn. Brain Res. 10, 1–9 (2000 ).
    CAS PubMed Google Scholar
  73. Paus, T. et al. Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J. Cogn. Neurosci. 9, 392–408 (1997).
    CAS PubMed Google Scholar
  74. Hofle, N. et al. Regional cerebral blood flow changes as a function of delta and spindle wave activity during slow wave sleep in humans. J. Neurosci. 17, 4800–4808 ( 1997).
    CAS PubMed PubMed Central Google Scholar
  75. Fiset, P. et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a PET study. J. Neurosci. 19, 5506 –5513 (1999).
    CAS PubMed PubMed Central Google Scholar
  76. Paus, T. Functional anatomy of arousal and attention systems in the human brain. Prog. Brain Res. 126, 65–77 (2000).
    CAS PubMed Google Scholar
  77. Thierry, A.-M., Godbout, R., Mantz, J. & Glowinski, J. Influence of the ascending monoaminergic systems on the activity of the rat prefrontal cortex. Prog. Brain Res. 85, 355– 363 (1990).
    Google Scholar
  78. Deutch, A. Y. & Roth, R. H. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog. Brain Res. 85, 365–401 ( 1990).An excellent and still timely review of neurotransmitters and neuromodulators involved in the cortical response to stress.
    Google Scholar
  79. Bertolucci-D'Angio, M., Serrano, A., Driscoll, P. & Scatton, B. Involvement of mesocorticolimbic dopaminergic systems in emotional states . Prog. Brain Res. 85, 405– 417 (1990).
    CAS PubMed Google Scholar
  80. Grasby, P. M. et al. The effect of the dopamine agonist, apomorphine, on regional cerebral blood flow in normal volunteers. Psychol. Med. 23, 605–612 (1993).
    CAS PubMed Google Scholar
  81. Kapur, S., Meyer, J., Wilson, A. A., Houle, S. & Brown, G. M. Activation of specific cortical regions by apomorphine: an [15O]H2O PET study in humans. Neurosci. Lett. 176, 21–24 ( 1994).
    CAS PubMed Google Scholar
  82. Bartlett, E. J. et al. Effects of haloperidol challenge on regional cerebral glucose utilization in normal human subjects. Am. J. Psychiatry 151, 681–686 (1994).
    CAS PubMed Google Scholar
  83. Paus, T. et al. Alpha-methyl-para-tyrosine (AMPT) attenuates task-specific CBF changes in the human anterior cingulate cortex. Soc. Neurosci. Abstr. 20, 353 (1994).
    Google Scholar
  84. Barris, R. W. & Schuman, H. R. Bilateral anterior cingulate gyrus lesions. Syndrome of the anterior cingulate gyri. Neurology 3, 44–52 (1953 ).
    CAS PubMed Google Scholar
  85. Laplane, D., Degos, J. D., Maulac, M. & Gray, F. Bilateral infarctions of the anterior cingulate gyri and of the fornices. J. Neurol. Sci. 51, 289–300 ( 1981).
    CAS PubMed Google Scholar
  86. Nielsen, J. M. & Jacobs, L. L. Bilateral lesions of the anterior cingulate gyri. Report of case. Bull. Los Angeles Neurol. Soc. 16, 231–234 (1951).
    CAS PubMed Google Scholar
  87. Buge, A., Escourolle, R., Rancurel, G. & Poisson, M. Mutisme akinétique et ramollissement bicingulaire. 3 observations anatomo-cliniques . Rev. Neurol. (Paris) 131, 121– 137 (1975).
    CAS Google Scholar
  88. Németh, G., Hegedüs, K. & Molnár, L. Akinetic mutism associated with bicingular lesions: clinicopathological and functional anatomical correlates. Eur. Arch. Psychiatry Neurol. Sci. 237, 218– 222 (1988).
    PubMed Google Scholar
  89. Laplane, D., Talairach, J., Meininger, V., Bancaud, J. & Orgogozo, J. M. Clinical consequences of corticectomies involving the supplementary motor area in man. J. Neurol. Sci. 34, 301–314 ( 1977).
    CAS PubMed Google Scholar
  90. Jürgens, U. & Von Cramon, D. On the role of the anterior cingulate cortex in phonation: a case report. Brain Lang. 15, 234–248 (1982).
    PubMed Google Scholar
  91. Shahani, B., Burrows, P. & Whitty, C. W. M. The grasp reflex and perseveration. Brain 93, 181–192 ( 1970).
    CAS PubMed Google Scholar
  92. De Renzi, E. & Babieri, C. The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain 115, 293–313 ( 1992).
    PubMed Google Scholar
  93. Hashimoto, R. & Tanaka, Y. Contribution of the supplementary motor area and anterior cingulate gyrus to pathological grasping phenomena . Eur. Neurol. 40, 151– 158 (1998).
    CAS PubMed Google Scholar
  94. Banks, G. et al. The alien hand syndrome. Clinical and postmortem findings. Arch. Neurol. 46, 456–459 (1989).
    CAS PubMed Google Scholar
  95. Goldberg, G., Mayer, N. H. & Toglia, J. U. Medial frontal cortex infarction and the alien hand sign. Arch. Neurol. 38, 683– 686 (1981).
    CAS PubMed Google Scholar
  96. Gaymard, B. et al. Effects of anterior cingulate cortex lesions on ocular saccades in humans. Exp. Brain Res. 120, 173– 183 (1998).
    CAS PubMed Google Scholar
  97. Paus, T. et al. Medial vs. lateral frontal lobe lesions and differential impairment of central gaze fixation maintenance in man. Brain 114, 2051–2067 (1991).
    PubMed Google Scholar
  98. Stephan, K. M. et al. The role of ventral medial wall motor areas in bimanual co-ordination. A combined lesion and activation study. Brain 122, 351–368 (1999).
    PubMed Google Scholar
  99. Turken, A. U. & Swick, D. Response selection in the human anterior cingulate cortex. Nature Neurosci. 2, 920 –924 (1999).An important demonstration of cognitive impairment circumscribed to a single response modality.
    CAS PubMed Google Scholar
  100. Sutton, D., Larson, C. & Lindeman, R. C. Neocortical and limbic lesion effects on primate phonation. Brain Res. 71, 61– 75 (1974).
    CAS PubMed Google Scholar
  101. Sutton, D., Trachy, R. E. & Lindeman, R. C. Primate phonation: unilateral and bilateral cingulate lesion effects. Behav. Brain Res. 3, 99– 114 (1981).
    CAS PubMed Google Scholar
  102. Aitken, P. G. Cortical control of conditioned and spontaneous vocal behavior in rhesus monkeys . Brain Lang. 13, 171–184 (1981).An analysis of self-initiated vocalization in monkeys with lesions to the anterior cingulate cortex and to the areas homologous to Broca's and Wernicke's on the convexity of the frontal lobes.
    CAS PubMed Google Scholar
  103. MacLean, P. D. & Newman, J. D. Role of midline frontolimbic cortex in production of the isolation call of squirrel monkeys . Brain Res. 450, 111–123 (1988).
    CAS PubMed Google Scholar
  104. Pribram, K. H., Wilson, W. A. Jr & Connors, J. Effects of lesions of the medial forebrain on alternation behavior of rhesus monkeys. Exp. Neurol. 6, 36–47 (1962).
    CAS PubMed Google Scholar
  105. Gabriel, M. Functions of anterior and posterior cingulate cortex during avoidance learning in rabbits. Prog. Brain Res. 85, 465– 481 (1990).
    Google Scholar
  106. Raichle, M. E. et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex 4, 8–26 (1994).
    CAS PubMed Google Scholar
  107. Glowinski, J. in Monoamine Innervation of Cerebral Cortex (eds Descarries, L., Reader, T. R. & Jasper, H. H.) 229–231 (Alan R. Liss, New York, 1984).
    Google Scholar
  108. Ross, E. D. & Stewart, R. M. Akinetic mutism from hypothalamic damage: successful treatment with dopamine agonists. Neurology 31, 1435–1439 ( 1981).A case study of the putative loss of dopamine-mediated modulation of the anterior cingulate cortex owing to a lesion of the anterior hypothalamus that also involved the medial forebrain bundle.
    CAS PubMed Google Scholar
  109. Sarkissov, S., Filimonoff, J., Kononova, E., Preobraschenskaja, I. & Kukuew, L. Atlas of the Cytoarchitectonics of the Human Cerebral Cortex (Medzig, Moscow, 1955).
    Google Scholar
  110. Vogt, B. A., Nimchinsky, E. A., Vogt. L. J. & Hof, P. R. Human cingulate cortex: surface features, flat maps, and cytoarchitecture . J. Comp. Neurol. 359, 490– 506 (1995).Systematic study of the cingulate cytoarchitecture and its relationship to the sulcal pattern in the human brain.
    CAS PubMed Google Scholar

Download references