Microscopic origins of entropy, heat capacity and the glass transition in proteins (original) (raw)

References

  1. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscape and motions of proteins. Science 254, 1598–1603 (1991).
    Article ADS CAS Google Scholar
  2. Karplus, M., Ichiye, T. & Pettitt, B. M. Configurational entropy of native proteins. Biophys. J. 52, 1083–1088 (1987).
    Article CAS Google Scholar
  3. Frauenfelder, H. & Wolynes, P. G. Rate theories and puzzles of hemeprotein kinetics. Science 229, 337–345 (1985).
    Article ADS CAS Google Scholar
  4. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373 (1975).
    Article CAS Google Scholar
  5. Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220K. Nature 357, 423–424 (1992).
    Article ADS CAS Google Scholar
  6. Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA 95, 7406–7411 (1998).
    Article ADS CAS Google Scholar
  7. Feher, V. A. & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289–293 (1999).
    Article ADS CAS Google Scholar
  8. Onuchic, J. N., Luthey-schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).
    Article ADS CAS Google Scholar
  9. Palmer, A. G. III. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 7, 732–737 (1997).
    Article MathSciNet CAS Google Scholar
  10. Nicholson, L. K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C-NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).
    Article CAS Google Scholar
  11. Wand, A. J., Urbauer, J. L., McEvoy, R. P. & Bieber, R. J. Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry 35, 6116–6125 (1996).
    Article CAS Google Scholar
  12. Le Master, D. M. NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc. 121, 1726–1742 (1999).
    Article CAS Google Scholar
  13. Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Prot. Sci. 5, 2647–2650 (1996).
    Article CAS Google Scholar
  14. Yang, D. & Kay, L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 263, 369–382 (1996).
    Article CAS Google Scholar
  15. Muhandiram, D. R., Yamazaki, T., Sykes, B. D. & Kay, L. E. Measurement of H-2 T1 and T1ρ relaxation-times in uniformly C13-labeled and fractionally H2-labeled proteins in solution. J. Am. Chem. Soc. 117, 11536–11544 (1995).
    Article CAS Google Scholar
  16. Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nature Struct. Biol. 7, 72–77 (2000).
    Article CAS Google Scholar
  17. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).
    Article CAS Google Scholar
  18. Lee, A. L., Flynn, P. F. & Wand, A. J. Comparison of H-2 and C-13 NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc. 121, 2891–2902 (1999).
    Article CAS Google Scholar
  19. Mittermaier, A., Kay, L. E. & Forman-Kay, J. D. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. J. Biomol. NMR 13, 181–185 (1999).
    Article CAS Google Scholar
  20. Kay, L. E., Muhandiram, D. R., Farrow, N. A., Aubin, Y. & Forman-Kay, J. D. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry 35, 361–368 (1996).
    Article CAS Google Scholar
  21. Constantine, K. L. et al. Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry 37, 7965–7980 (1998).
    Article CAS Google Scholar
  22. Yang, D., Mittermaier, A., Mok, Y. K. & Kay, L. E. A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J. Mol. Biol. 276, 939–954 (1998).
    Article CAS Google Scholar
  23. Sokolov, A. P. Why the glass transition is still interesting. Science 273, 1675–1676 (1996).
    Article ADS CAS Google Scholar
  24. Hartmann, H. et al. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80K. Proc. Natl Acad. Sci. USA 79, 4967–4971 (1982).
    Article ADS CAS Google Scholar
  25. Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K. Biochemistry 31, 2469–2481 (1992).
    Article CAS Google Scholar
  26. Doster, W., Cusack, S. & Perry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).
    Article ADS CAS Google Scholar
  27. Diehl, M., Doster, W., Petry, W. & Schober, H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J. 73, 2726–2732 (1997).
    Article CAS Google Scholar
  28. Réat, V. et al. Solvent dependence of dynamic transitions in protein solutions. Proc. Natl Acad. Sci. USA 97, 9961–9966 (2000).
    Article ADS Google Scholar

Download references