Microscopic origins of entropy, heat capacity and the glass transition in proteins (original) (raw)
References
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscape and motions of proteins. Science254, 1598–1603 (1991). ArticleADSCAS Google Scholar
Karplus, M., Ichiye, T. & Pettitt, B. M. Configurational entropy of native proteins. Biophys. J.52, 1083–1088 (1987). ArticleCAS Google Scholar
Frauenfelder, H. & Wolynes, P. G. Rate theories and puzzles of hemeprotein kinetics. Science229, 337–345 (1985). ArticleADSCAS Google Scholar
Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. Dynamics of ligand binding to myoglobin. Biochemistry14, 5355–5373 (1975). ArticleCAS Google Scholar
Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. Crystalline ribonuclease A loses function below the dynamical transition at 220K. Nature357, 423–424 (1992). ArticleADSCAS Google Scholar
Zavodszky, P., Kardos, J., Svingor, A. & Petsko, G. A. Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc. Natl Acad. Sci. USA95, 7406–7411 (1998). ArticleADSCAS Google Scholar
Feher, V. A. & Cavanagh, J. Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature400, 289–293 (1999). ArticleADSCAS Google Scholar
Onuchic, J. N., Luthey-schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem.48, 545–600 (1997). ArticleADSCAS Google Scholar
Nicholson, L. K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C-NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry31, 5253–5263 (1992). ArticleCAS Google Scholar
Wand, A. J., Urbauer, J. L., McEvoy, R. P. & Bieber, R. J. Internal dynamics of human ubiquitin revealed by 13C-relaxation studies of randomly fractionally labeled protein. Biochemistry35, 6116–6125 (1996). ArticleCAS Google Scholar
Le Master, D. M. NMR relaxation order parameter analysis of the dynamics of protein side chains. J. Am. Chem. Soc.121, 1726–1742 (1999). ArticleCAS Google Scholar
Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Prot. Sci.5, 2647–2650 (1996). ArticleCAS Google Scholar
Yang, D. & Kay, L. E. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol.263, 369–382 (1996). ArticleCAS Google Scholar
Muhandiram, D. R., Yamazaki, T., Sykes, B. D. & Kay, L. E. Measurement of H-2 T1 and T1ρ relaxation-times in uniformly C13-labeled and fractionally H2-labeled proteins in solution. J. Am. Chem. Soc.117, 11536–11544 (1995). ArticleCAS Google Scholar
Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nature Struct. Biol.7, 72–77 (2000). ArticleCAS Google Scholar
Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc.104, 4546–4559 (1982). ArticleCAS Google Scholar
Lee, A. L., Flynn, P. F. & Wand, A. J. Comparison of H-2 and C-13 NMR relaxation techniques for the study of protein methyl group dynamics in solution. J. Am. Chem. Soc.121, 2891–2902 (1999). ArticleCAS Google Scholar
Mittermaier, A., Kay, L. E. & Forman-Kay, J. D. Analysis of deuterium relaxation-derived methyl axis order parameters and correlation with local structure. J. Biomol. NMR13, 181–185 (1999). ArticleCAS Google Scholar
Kay, L. E., Muhandiram, D. R., Farrow, N. A., Aubin, Y. & Forman-Kay, J. D. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry35, 361–368 (1996). ArticleCAS Google Scholar
Constantine, K. L. et al. Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry37, 7965–7980 (1998). ArticleCAS Google Scholar
Yang, D., Mittermaier, A., Mok, Y. K. & Kay, L. E. A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J. Mol. Biol.276, 939–954 (1998). ArticleCAS Google Scholar
Sokolov, A. P. Why the glass transition is still interesting. Science273, 1675–1676 (1996). ArticleADSCAS Google Scholar
Hartmann, H. et al. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80K. Proc. Natl Acad. Sci. USA79, 4967–4971 (1982). ArticleADSCAS Google Scholar
Tilton, R. F. Jr, Dewan, J. C. & Petsko, G. A. Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320K. Biochemistry31, 2469–2481 (1992). ArticleCAS Google Scholar
Doster, W., Cusack, S. & Perry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature337, 754–756 (1989). ArticleADSCAS Google Scholar
Diehl, M., Doster, W., Petry, W. & Schober, H. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering. Biophys. J.73, 2726–2732 (1997). ArticleCAS Google Scholar
Réat, V. et al. Solvent dependence of dynamic transitions in protein solutions. Proc. Natl Acad. Sci. USA97, 9961–9966 (2000). ArticleADS Google Scholar