Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour (original) (raw)

References

  1. Glover, D. M., Gonzalez, C. & Raff, J. W. The centrosome. Sci. Am. 268, 62–68 (1993).
    Article CAS Google Scholar
  2. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).
    Article CAS Google Scholar
  3. Kellogg, D. R., Moritz, M. & Alberts, B. M. The centrosome and cellular organization. Annu. Rev. Biochem. 63, 639–674 (1994).
    Article CAS Google Scholar
  4. Felix, M. A., Antony, C., Wright, M. & Maro, B. Centrosome assembly in vitro: role of γ-tubulin recruitment in Xenopus sperm aster formation. J. Cell Biol. 124, 19–31 (1994).
    Article CAS Google Scholar
  5. Joshi, H. C., Palacios, M. J., McNamara, L. & Cleveland, D. W. γ-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 356, 80–83 (1992).
    Article CAS Google Scholar
  6. Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. γ-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301 (1990).
    Article CAS Google Scholar
  7. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of γ-tubulin. Cell 76, 623–637 (1994).
    Article CAS Google Scholar
  8. Sunkel, C. E., Gomes, R., Sampaio, P., Perdigao, J. & Gonzalez, C. γ-tubulin is required for the structure and function of the microtubule organizing center in Drosophila neuroblasts. EMBO J. 14, 28–36 (1995).
    Article CAS Google Scholar
  9. Zheng, Y. X., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578–583 (1995).
    Article CAS Google Scholar
  10. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).
    Article CAS Google Scholar
  11. Erickson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol. 2, E93–E96 (2000).
    Article CAS Google Scholar
  12. Gunawardane, R. N., Lizarraga, S. B., Wiese, C., Wilde, A. & Zheng, Y. γ-tubulin complexes and their role in microtubule nucleation Curr. Top. Dev. Biol. 49, 55–73 (2000).
    Article CAS Google Scholar
  13. Compton, D. A. Focusing on spindle poles. J. Cell Sci. 111, 1477–1481 (1998).
    CAS PubMed Google Scholar
  14. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401–410 (1996).
    Article CAS Google Scholar
  15. Merdes, A. & Cleveland, D. W. Pathways of spindle pole formation: different mechanisms; conserved components. J. Cell Biol. 138, 953–956 (1997).
    Article CAS Google Scholar
  16. Cullen, C. F., Deak, P., Glover, D. M. & Ohkura, H. Mini spindles. A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).
    Article CAS Google Scholar
  17. do Carmo Avides, M. & Glover, D. M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).
    Article CAS Google Scholar
  18. Kellogg, D. R., Field, C. M. & Alberts, B. M. Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo. J. Cell Biol. 109, 2977–2991 (1989).
    Article CAS Google Scholar
  19. Kellogg, D. R., Oegema, K., Raff, J., Schneider, K. & Alberts, B. M. CP60 a microtubule associated protein that is localized to the centrosome in a cell cycle specific manner. Mol. Biol. Cell 6, 1673–1684 (1995).
    Article CAS Google Scholar
  20. Oegema, K., Marshall, W. F., Sedat, J. W. & Alberts, B. M. Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP190. J. Cell Sci. 110, 1573–1583 (1997).
    CAS PubMed Google Scholar
  21. Kidd, D. & Raff, J. W. LK6, a short lived protein kinase in Drosophila that can associate with microtubules and centrosomes. J. Cell Sci. 110, 209–219 (1997).
    CAS PubMed Google Scholar
  22. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).
    Article CAS Google Scholar
  23. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 (1994).
    Article CAS Google Scholar
  24. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).
    Article CAS Google Scholar
  25. Spittle, C., Charrasse, S., Larroque, C. & Cassimeris, L. The interaction of TOGp with microtubules and tubulin. J. Biol. Chem. 275, 20748–20753 (2000).
    Article CAS Google Scholar
  26. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111, 1371–1383 (1998).
    CAS Google Scholar
  27. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).
    Article CAS Google Scholar
  28. Nabeshima, K. et al. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572–1585 (1995).
    Article CAS Google Scholar
  29. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).
    Article CAS Google Scholar
  30. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G. & Raff, J. W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J. 19, 241–252 (2000).
    Article CAS Google Scholar
  31. Chen, H. M. et al. AZU-1: A candidate breast tumor suppressor and biomarker for tumor progression. Mol. Biol. Cell 11, 1357–1367 (2000).
    Article CAS Google Scholar
  32. Still, I. H., Hamilton, M., Vince, P., Wolfman, A. & Cowell, J. K. Cloning of TACC1, an embryonically expressed, potentially transforming coiled coil containing gene, from the 8p11 breast cancer amplicon. Oncogene 18, 4032–4038 (1999).
    Article CAS Google Scholar
  33. Still, I. H., Vince, P. & Cowell, J. K. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 58, 165–170 (1999).
    Article CAS Google Scholar
  34. Gergely, F. et al. The TACC domain identifies a new family of proteins that can interact with centrosomes and microtubules. Proc. Natl Acad. Sci. USA 97, 14352–12357 (2000).
    Article CAS Google Scholar
  35. Cullen, C. F. & Ohkura, H. Msps is localized to acentrosomal poles by Ncd and D-TACC to ensure the bipolarity of Drosophila meiotic spindles. Nature Cell Biol. 3, 637–642.
  36. Laemmli, U. K. Cleavage of the structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
    Article CAS Google Scholar
  37. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
    Article CAS Google Scholar
  38. Raff, J. W., Kellogg, D. R. & Alberts, B. M. Drosophila γ-tubulin is part of a complex containing two previously identified centrosomal MAPs. J. Cell Biol. 121, 823–835 (1993).
    Article CAS Google Scholar
  39. Heuer, J. G., Li, K. & Kaufman, T. C. The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121, 3861–3876 (1995).
    CAS PubMed Google Scholar
  40. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).
    Article CAS Google Scholar
  41. Rorth, P. Gal4 in the Drosophila female germline. Mech. Dev. 78, 113–118 (1998).
    Article CAS Google Scholar
  42. Towbin, H., Staehlin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc. Natl Acad. Sci. USA 80, 4350–4354 (1979).
    Article Google Scholar

Download references