Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains (original) (raw)
References
Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature382, 225–230 (1996). ArticleADSCAS Google Scholar
Wodarz, A. & Nusse, R. Mechanisms of Wnt signalling in development. Annu. Rev. Cell Dev. Biol.14, 59–88 (1998). ArticleCAS Google Scholar
Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res.58, 1130–1134 (1998). CASPubMed Google Scholar
Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA94, 2859–2863 (1997). ArticleADSCAS Google Scholar
Finch, P. W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl Acad. Sci. USA94, 6770–6775 (1997). ArticleADSCAS Google Scholar
Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signalling expressed in the Spemann organizer. Cell88, 747–756 (1997). ArticleCAS Google Scholar
Moon, R. T., Brown, J. D., Yang-Snyder, J. A. & Miller, J. R. Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell88, 725–728 (1997). ArticleCAS Google Scholar
Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature407, 527–530 (2000). ArticleADSCAS Google Scholar
Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature407, 530–535 (2000). ArticleADSCAS Google Scholar
Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature407, 535–538 (2000). ArticleADSCAS Google Scholar
Masiakowski, P. & Yancopoulos, G. D. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr. Biol.8, R407 (1998). ArticleCAS Google Scholar
Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol.8, R405–406 (1998). ArticleCAS Google Scholar
Leahy, D. J., Dann, C. E., Longo, P., Perman, B. & Ramyar, K. A mammalian expression vector for expression and purification of secreted proteins for structural studies. Protein Expr. Purif.20, 500–506 (2000). ArticleCAS Google Scholar
Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science254, 51–58 (1991). ArticleADSCAS Google Scholar
Dauter, Z., Dauter, M. & Rajashankar, K. R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D56, 232–237 (2000). ArticleCAS Google Scholar
Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci.20, 478–480 (1995). ArticleCAS Google Scholar
Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol.247, 536–540 (1995). CAS Google Scholar
Orengo, C. A. et al. CATH—a hierarchic classification of protein domain structures. Structure5, 1093–1108 (1997). ArticleCAS Google Scholar
Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol.234, 946–950 (1993). ArticleCAS Google Scholar
Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt–frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA96, 3546–3551 (1999). ArticleADSCAS Google Scholar
Wells, J. A. Systematic mutational analyses of protein–protein interfaces. Methods Enzymol.202, 390–411 (1991). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol276, 307–326 (1997). ArticleCAS Google Scholar
Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D55, 849–861 (1999). ArticleCAS Google Scholar
Zhang, K. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A46, 41–46 (1990). Article Google Scholar
Jones, T., Zou, J.-Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991). Article Google Scholar
Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998). ArticleCAS Google Scholar
Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng.10, 1–6 (1997). ArticleCAS Google Scholar
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins11, 281–296 (1991). ArticleCAS Google Scholar