Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains (original) (raw)

References

  1. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).
    Article ADS CAS Google Scholar
  2. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).
    Article CAS Google Scholar
  3. Wodarz, A. & Nusse, R. Mechanisms of Wnt signalling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).
    Article CAS Google Scholar
  4. Sparks, A. B., Morin, P. J., Vogelstein, B. & Kinzler, K. W. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58, 1130–1134 (1998).
    CAS PubMed Google Scholar
  5. Rattner, A. et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA 94, 2859–2863 (1997).
    Article ADS CAS Google Scholar
  6. Finch, P. W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl Acad. Sci. USA 94, 6770–6775 (1997).
    Article ADS CAS Google Scholar
  7. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signalling expressed in the Spemann organizer. Cell 88, 747–756 (1997).
    Article CAS Google Scholar
  8. Moon, R. T., Brown, J. D., Yang-Snyder, J. A. & Miller, J. R. Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88, 725–728 (1997).
    Article CAS Google Scholar
  9. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).
    Article ADS CAS Google Scholar
  10. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).
    Article ADS CAS Google Scholar
  11. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).
    Article ADS CAS Google Scholar
  12. Masiakowski, P. & Yancopoulos, G. D. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr. Biol. 8, R407 (1998).
    Article CAS Google Scholar
  13. Xu, Y. K. & Nusse, R. The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr. Biol. 8, R405–406 (1998).
    Article CAS Google Scholar
  14. Leahy, D. J., Dann, C. E., Longo, P., Perman, B. & Ramyar, K. A mammalian expression vector for expression and purification of secreted proteins for structural studies. Protein Expr. Purif. 20, 500–506 (2000).
    Article CAS Google Scholar
  15. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).
    Article ADS CAS Google Scholar
  16. Dauter, Z., Dauter, M. & Rajashankar, K. R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D 56, 232–237 (2000).
    Article CAS Google Scholar
  17. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).
    Article CAS Google Scholar
  18. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).
    CAS Google Scholar
  19. Orengo, C. A. et al. CATH—a hierarchic classification of protein domain structures. Structure 5, 1093–1108 (1997).
    Article CAS Google Scholar
  20. Lawrence, M. C. & Colman, P. M. Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993).
    Article CAS Google Scholar
  21. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt–frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA 96, 3546–3551 (1999).
    Article ADS CAS Google Scholar
  22. Wells, J. A. Systematic mutational analyses of protein–protein interfaces. Methods Enzymol. 202, 390–411 (1991).
    Article CAS Google Scholar
  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307–326 (1997).
    Article CAS Google Scholar
  24. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).
    Article CAS Google Scholar
  25. Zhang, K. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A 46, 41–46 (1990).
    Article Google Scholar
  26. Jones, T., Zou, J.-Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  27. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
    Article CAS Google Scholar
  28. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 961–985 (1991).
    Article Google Scholar
  29. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).
    Article CAS Google Scholar
  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
    Article CAS Google Scholar

Download references