Time zones: a comparative genetics of circadian clocks (original) (raw)
Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science284, 2177–2181 (1999). ArticleCASPubMed Google Scholar
Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science291, 1040–1043 (2001).First human mutation that affects circadian rhythmicity is associated with an alteration ofPER2. The altered PER2 protein is hypophosphorylated by casein kinase 1ɛin vitro. ArticleCASPubMed Google Scholar
Chovnik, A. (ed.) Biological Clocks. Cold Spring Harbor Symposia of Quantitative Biology Vol. 25 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1960). Google Scholar
Weiner, J. Time, Love, Memory (Alfred Knopf, New York, 1999). Google Scholar
Bargiello, T. A. & Young, M. W. Molecular genetics of a biological clock in Drosophila. Proc. Natl Acad. Sci. USA81, 2142–2146 (1984). ArticleCASPubMedPubMed Central Google Scholar
Reddy, P., Zehring, W. A., Wheeler, D. A., Pirrotta, V., Hadfield, C., Hall, J. C. & Rosbash, M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell38, 701–710 (1984). ArticleCASPubMed Google Scholar
McClung, C. R., Fox, B. A. & Dunlap, J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature339, 558–562 (1989). ArticleCASPubMed Google Scholar
Young, M. W. Life's 24-hour clock: molecular control of circadian rhythms in animal cells. Trends Biochem. Sci.25, 601–606 (2000). ArticleCASPubMed Google Scholar
Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell105, 769–779 (2001).GSK-3, a kinase central to developmental signalling in the Wnt pathway, phosphorylates Timeless (TIM). TIM phosphorylation determines when PER/TIM complexes move to nuclei. ArticleCASPubMed Google Scholar
Shimomura, K. et al. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome Res.11, 959–980 (2001). ArticleCASPubMed Google Scholar
Allada, R., Emery, P., Takahashi, J. S. & Rosbash, M. STOPPING TIME: the genetics of fly and mouse circadian clocks. Annu. Rev. Neurosci.24, 1091–1109 (2001). ArticleCASPubMed Google Scholar
Kloss, B., Rothenfluh, A., Young, M. W. & Saez, L. Phosphorylation of period is influenced by cycling physical associations of double-time, period, and timeless in the Drosophila clock. Neuron30, 699–706 (2001). ArticleCASPubMed Google Scholar
Rothenfluh, A., Young, M. W. & Saez, L. A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron26, 505–514 (2000). ArticleCASPubMed Google Scholar
Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science285, 553–556 (1999). ArticleCASPubMed Google Scholar
Emery, P., Stanewsky, R., Hall, J. C. & Rosbash, M. A unique circadian-rhythm photoreceptor. Nature404, 456–457 (2000). ArticleCASPubMed Google Scholar
Naidoo, N., Song, W., Hunter-Ensor, M. & Sehgal, A. A role for the proteasome in the light response of the timeless clock protein. Science285, 1737–1741 (1999). ArticleCASPubMed Google Scholar
Helfrich-Forster, C., Winter, C., Hofbauer, A., Hall, J. C. & Stanewsky, R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron30, 249–261 (2001). ArticleCASPubMed Google Scholar
Curtin, K. D., Huang, Z. J. & Rosbash, M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron14, 365–372 (1995). ArticleCASPubMed Google Scholar
Zeng, H., Qian, Z., Myers, M. P. & Rosbash, M. A light-entrainment mechanism for the Drosophila circadian clock. Nature380, 129–135 (1996). ArticleCASPubMed Google Scholar
Price, J. L. et al. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell94, 83–95 (1998). ArticleCASPubMed Google Scholar
Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science287, 1606–1609 (2000). ArticleCASPubMed Google Scholar
Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell93, 791–804 (1998).Describes the isolation of theDrosophilaorthologue of mammalianClockand an arrhythmic mutation of the gene that suppressesperandtimtranscription. ArticleCASPubMed Google Scholar
Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science280, 1599–1603 (1998).Establishes that inDrosophilaClock and Cycle positively regulate transcription ofperandtim, and that nuclear PER and TIM proteins suppress CLK/CYC activity. ArticleCASPubMed Google Scholar
Bae, K., Lee, C., Sidote, D., Chuang, K. Y. & Edery, I. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol. Cell. Biol.18, 6142–6151 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, C., Bae, K. & Edery, I. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER–TIM complex. Neuron21, 857–867 (1998). ArticleCASPubMed Google Scholar
Glossop, N. R., Lyons, L. C. & Hardin, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science286, 766–768 (1999). ArticleCASPubMed Google Scholar
Blau, J. & Young, M. W. Cycling vrille expression is required for a functional Drosophila clock. Cell99, 661–671 (1999).Identification and cloning of clock genevri. VRI forms a second autoregulatory loop in the clock and also controls some output pathways. ArticleCASPubMed Google Scholar
Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev.15, 995–1006 (2001). ArticleCASPubMedPubMed Central Google Scholar
Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol.63, 647–676 (2001). ArticleCASPubMed Google Scholar
Ripperger, J. A. & Schibler, U. Circadian regulation of gene expression in animals. Curr. Opin. Cell Biol.13, 357–362 (2001). ArticleCASPubMed Google Scholar
Cermakian, N. & Sassone-Corsi, P. Multilevel regulation of the circadian clock. Nature Rev. Mol. Cell Biol.1, 59–67 (2000). ArticleCAS Google Scholar
Vielhaber, E., Eide, E., Rivers, A., Gao, Z. H. & Virshup, D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol. Cell. Biol.20, 4888–4899 (2000). ArticleCASPubMedPubMed Central Google Scholar
Keesler, G. A. et al. Phosphorylation and destabilization of human period I clock protein by human casein kinase I ɛ. NeuroReport11, 951–955 (2000). ArticleCASPubMed Google Scholar
Takano, A., Shimizu, K., Kani, S., Buijs, R. M., Okada, M. & Nagai, K. Cloning and characterization of rat casein kinase 1ɛ. FEBS Lett.477, 106–112 (2000). ArticleCASPubMed Google Scholar
Ralph, M. R. & Menaker, M. A mutation of the circadian system in golden hamsters. Science241, 1225–1227 (1988). ArticleCASPubMed Google Scholar
Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science288, 483–492 (2000).Cloning of the hamsterTaugene shows that it encodes casein kinase 1ɛ, and that thetaumutation alters phosphorylation and binding to PERin vitro. ArticleCASPubMedPubMed Central Google Scholar
Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell96, 57–68 (1999). ArticleCASPubMed Google Scholar
Sangoram, A. M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK–BMAL1-induced transcription. Neuron21, 1101–1113 (1998). ArticleCASPubMed Google Scholar
Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron30, 525–536 (2001). ArticleCASPubMed Google Scholar
Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell105, 683–694 (2001). ArticleCASPubMed Google Scholar
Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science288, 1013–1019 (2000).Describes the role of PER2 as a positive regulator ofBmal1expression, and CRY as a negative regulator ofPerandCryexpression in mouse tissues. ArticleCASPubMed Google Scholar
Okamura, H. et al. Photic induction of mPer1 and mPer2 in _cry_-deficient mice lacking a biological clock. Science286, 2531–2534 (1999). ArticleCASPubMed Google Scholar
Van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature398, 627–630 (1999).First demonstration that, in mammals, cryptochromes are required for the function of the clock. ArticleCASPubMed Google Scholar
Vitaterna, M. H. et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA96, 12114–12119 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell98, 193–205 (1999).Shows that cryptochromes are transcriptional regulators ofPerandCry. ArticleCASPubMed Google Scholar
Selby, C. P., Thompson, C., Schmitz, T. M., Van Gelder, R. N. & Sancar, A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc. Natl Acad. Sci. USA97, 14697–14702 (2000). ArticleCASPubMedPubMed Central Google Scholar
Krishnan, B. et al. A new role for cryptochrome in a Drosophila circadian oscillator. Nature411, 313–317 (2001). ArticleCASPubMed Google Scholar
Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell93, 929–937 (1998).Rat fibroblasts in culture for over two decades can show circadian rhythms of expression for some clock genes. ArticleCASPubMed Google Scholar
Yagita, K., Tamanini, F., van Der Horst, G. T. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science292, 278–281 (2001). ArticleCASPubMed Google Scholar
Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev.14, 2950–2961 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science291, 490–493 (2001).References56and57show that peripheral clocks can be entrained by non-photic stimuli, such as feeding. ArticleCASPubMed Google Scholar
Kornmann, B., Preitner, N., Rifat, D., Fleury-Olela, F. & Schibler, U. Analysis of circadian liver gene expression by ADDER, a highly sensitive method for the display of differentially expressed mRNAs. Nucleic Acids Res.29, E51–1 (2001). ArticleCASPubMedPubMed Central Google Scholar
Whitmore, D., Foulkes, N. S. & Sassone-Corsi, P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature404, 87–91 (2000).Photoreceptive clocks are discovered in the internal organs of zebrafish. ArticleCASPubMed Google Scholar
Aronson, B. D., Johnson, K. A., Loros, J. J. & Dunlap, J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science263, 1578–1584 (1994). ArticleCASPubMed Google Scholar
Gu, Y. Z., Hogenesch, J. B. & Bradfield, C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol.40, 519–561 (2000). ArticleCASPubMed Google Scholar
Lee, K., Loros, J. J. & Dunlap, J. C. Interconnected feedback loops in the Neurospora circadian system. Science289, 107–110 (2000). ArticleCASPubMed Google Scholar
Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell101, 319–329 (2000). ArticleCASPubMed Google Scholar
Crosthwaite, S. K., Dunlap, J. C. & Loros, J. J. Neurospora wc-1 and wc-2: transcription, photoresponses and the origins of circadian rhythmicity. Science276, 763–769 (1997). ArticleCASPubMed Google Scholar
Ballario, P. & Macino, G. White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol.5, 458–462 (1997). ArticleCASPubMed Google Scholar
Talora, C., Franchi, L., Linden, H., Ballario, P. & Macino, G. Role of a white collar-1–white collar-2 complex in blue-light signal transduction. EMBO J.18, 4961–4968 (1999). ArticleCASPubMedPubMed Central Google Scholar
Collett, M., Dunlap, J. C. & Loros, J. J. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol. Cell. Biol.21, 2619–2628 (2001). ArticleCASPubMedPubMed Central Google Scholar
Cheng, P., Yang, Y., Heintzen, C. & Liu, Y. Coiled-coil domain-mediated FRQ–FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J.20, 101–108 (2001). ArticleCASPubMedPubMed Central Google Scholar
Denault, D. L., Loros, J. J. & Dunlap, J. C. WC-2 mediates WC-1–FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora crassa. EMBO J.20, 109–117 (2001). ArticleCASPubMedPubMed Central Google Scholar
Loros, J. J. & Dunlap, J. C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol.63, 757–794 (2001). ArticleCASPubMed Google Scholar
Christie, J. M., Salomon, M., Nozue, K., Wada, M. & Briggs, W. R. LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc. Natl Acad. Sci. USA96, 8779–8783 (1999). ArticleCASPubMedPubMed Central Google Scholar
Heintzen, C., Loros, J. J. & Dunlap, J. C. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell104, 453–464 (2001).Shows that VIVID regulates the circadian phase of light resetting of theNeurosporaclock. ArticleCASPubMed Google Scholar
Schrode, L. B. et al. vvd is required for light adaptation of conidiation-specific genes of Neurospora crassa, but not circadian conidiation. Fungal Genet. Biol.32, 169–181 (2001). ArticleCAS Google Scholar
Strayer, C. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science289, 768–771 (2000). ArticleCASPubMed Google Scholar
Millar, A. J. & Kay, S. A. Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell3, 541–550 (1991). ArticleCASPubMedPubMed Central Google Scholar
Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science282, 1488–1490 (1998).First report of cryptochromes as circadian photoreceptors in any organism. ArticleCASPubMed Google Scholar
Bunning, E. The Physiological Clock; Circadian Rhythms and Biological Chronometry 3rd edn (Springer, New York, 1973). Google Scholar
Wang, Z. Y. & Tobin, E. M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell93, 1207–1217 (1998).Discovery of a role for the transcription factor CCA1 in theArabidopsisclock. ArticleCASPubMed Google Scholar
Schaffer, R. et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell93, 1219–1229 (1998).LHY is suggested to be a clock component. ArticleCASPubMed Google Scholar
Alabadí, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science293, 880–883 (2001). Shows a negative-feedback loop in a plant clock. ArticlePubMed Google Scholar
Harmer, S. L. et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science290, 2110–2113 (2000).A comprehensive study of clock-controlled transcription in a eukaryote. It establishes acis-acting element that mediates clock control of transcription in plants. ArticleCASPubMed Google Scholar
Wang, Z. Y. et al. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell9, 491–507 (1997). ArticleCASPubMedPubMed Central Google Scholar
Green, R. M. & Tobin, E. M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl Acad. Sci. USA96, 4176–4179 (1999). ArticleCASPubMedPubMed Central Google Scholar
Matsushika, A., Makino, S., Kojima, M. & Mizuno, T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol.41, 1002–1012 (2000). ArticleCASPubMed Google Scholar
Sugano, S., Andronis, C., Ong, M. S., Green, R. M. & Tobin, E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl Acad. Sci. USA96, 12362–12366 (1999). ArticleCASPubMedPubMed Central Google Scholar
Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science274, 790–792 (1996). ArticleCASPubMed Google Scholar
Hicks, K. A., Albertson, T. M. & Wagner, D. R. Early flowering3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell13, 1281–1292 (2001). ArticleCASPubMedPubMed Central Google Scholar
McWatters, H. G., Bastow, R. M., Hall, A. & Millar, A. J. The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature408, 716–720 (2000). ArticleCASPubMed Google Scholar
Devlin, P. F. & Kay, S. A. Circadian photoperception. Annu. Rev. Physiol.63, 677–694 (2001). ArticleCASPubMed Google Scholar
Martinez-Garcia, J. F., Huq, E. & Quail, P. H. Direct targeting of light signals to a promoter element-bound transcription factor. Science288, 859–863 (2000). ArticleCASPubMed Google Scholar
Mas, P., Devlin, P. F., Panda, S. & Kay, S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature408, 207–211 (2000). ArticleCASPubMed Google Scholar
Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell13, 1293–1304 (2001). ArticleCASPubMedPubMed Central Google Scholar
Golden, S. S., Ishiura, M., Johnson, C. H. & Kondo, T. Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Mol. Biol.48, 327–354 (1997). ArticleCASPubMed Google Scholar
Kondo, T., Tsinoremas, N. F., Golden, S. S., Johnson, C. H., Kutsuna, S. & Ishiura, M. Circadian clock mutants of cyanobacteria. Science266, 1233–1236 (1994). ArticleCASPubMed Google Scholar
Ishiura, M. et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science281, 1519–1523 (1998).First cloning of clock genes in cyanobacteria. The inter-dependent, cycling expression of the threekaigenes is shown. ArticleCASPubMed Google Scholar
Xu, Y., Mori, T. & Johnson, C. H. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J.19, 3349–3357 (2000). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, H., Taniguchi, Y., Ishiura, M. & Kondo, T. Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria. EMBO J.18, 1137–1145 (1999). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA96, 151–156 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nishiwaki, T., Iwasaki, H., Ishiura, M. & Kondo, T. Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl Acad. Sci. USA97, 495–499 (2000). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, H. et al. A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell101, 223–233 (2000).Shows interaction of KaiC and SasA, and effects on period and amplitude of the cyanobacteria clock. ArticleCASPubMed Google Scholar
Liu, Y. et al. Circadian orchestration of gene expression in bacteria. Genes Dev.9, 1469–1478 (1995). ArticleCASPubMed Google Scholar
Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S. & Johnson, C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA95, 8660–8664 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gekakis, N. et al. Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science270, 811–815 (1995). ArticleCASPubMed Google Scholar
Vosshall, L. B., Price, J. L., Sehgal, A., Saez, L. & Young, M. W. Block in nuclear localization of period protein by a second clock mutation, timeless. Science263, 1606–1609 (1994). ArticleCASPubMed Google Scholar
McNamara, P. et al. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell105, 877–889 (2001).Retinoids physically associate with CLOCK and MOP4, and affect their ability to bind DNA. ArticleCASPubMed Google Scholar
Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science293, 510–514 (2001).A possible connection between redox state of a cell and function of NPAS2, a paralogue of CLOCK that is active in circadian clocks of the mammalian forebrain. ArticleCASPubMed Google Scholar
Lakin-Thomas, P. L. & Brody, S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc. Natl Acad. Sci. USA97, 256–261 (2000). ArticleCASPubMedPubMed Central Google Scholar
Merrow, M., Brunner, M. & Roenneberg, T. Assignment of circadian function for the Neurospora clock gene frequency. Nature399, 584–586 (1999). ArticleCASPubMed Google Scholar
Andretic, R., Chaney, S. & Hirsh, J. Requirement of circadian genes for cocaine sensitization in Drosophila. Science285, 1066–1068 (1999). ArticleCASPubMed Google Scholar
Belvin, M. P., Zhou, H. & Yin, J. C. The Drosophila dCREB2 gene affects the circadian clock. Neuron22, 777–787 (1999). ArticleCASPubMed Google Scholar
Sawyer, L. A. et al. Natural variation in a Drosophila clock gene and temperature compensation. Science278, 2117–2120 (1997). ArticleCASPubMed Google Scholar
Jackson, F. R., Bargiello, T. A., Yun, S. H. & Young, M. W. Product of per locus of Drosophila shares homology with proteoglycans. Nature320, 185–188 (1986). ArticleCASPubMed Google Scholar
Citri, Y. et al. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature326, 42–47 (1987). ArticleCASPubMed Google Scholar
Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science263, 1603–1606 (1994). ArticleCASPubMed Google Scholar
Myers, M. P., Wager-Smith, K., Wesley, C. S., Young, M. W. & Sehgal, A. Positional cloning and sequence analysis of the Drosophila clock gene, timeless. Science270, 805–808 (1995). ArticleCASPubMed Google Scholar
Kloss, B. et al. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase I ɛ. Cell94, 97–107 (1998).Cloning ofdouble-time. Description of casein kinase 1ɛ homologue and role in PER phosphorylation and stability. First enzyme as component of the molecular clock. ArticleCASPubMed Google Scholar
Rutila, J. E. et al. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell93, 805–814 (1998).Cloning ofcycleand description of an arrhythmic mutation of thisDrosophilaclock gene. ArticleCASPubMed Google Scholar
Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell95, 669–679 (1998). ArticleCASPubMed Google Scholar
Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell95, 681–692 (1998).Describes the characterization of a cryptochrome mutation inDrosophilaand its effects on photoreceptivity of the clock. ArticleCASPubMed Google Scholar
Tei, H. et al. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature389, 512–516 (1997). ArticleCASPubMed Google Scholar
Sun, Z. S. et al. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell90, 1003–1011 (1997). ArticleCASPubMed Google Scholar
Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr & Reppert, S. M. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron19, 1261–1269 (1997). ArticleCASPubMed Google Scholar
Koike, N. et al. Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1. FEBS Lett.441, 427–431 (1998). ArticleCASPubMed Google Scholar
Takumi, T. et al. A mammalian ortholog of Drosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1. Genes Cells4, 67–75 (1999). ArticleCASPubMed Google Scholar
Tischkau, S. A. et al. Oscillation and light induction of timeless mRNA in the mammalian circadian clock. J. Neurosci.19, 1–6 (1999). Article Google Scholar
Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science280, 1564–9 (1998).Establishes in mammals that CLOCK and BMAL1 positively regulate transcription ofPer, and that nuclear PER proteins suppress CLOCK/BMAL1 activity. ArticleCASPubMed Google Scholar
Hogenesch, J. B., Gu, Y. Z., Jain, S. & Bradfield, C. A. The basic-helix–loop–helix–PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl Acad. Sci. USA95, 5474–5479 (1998). ArticleCASPubMedPubMed Central Google Scholar
Honma, S. et al. Circadian oscillation of BMAL1, a partner of a mammalian clock gene Clock, in rat suprachiasmatic nucleus. Biochem. Biophys. Res. Commun.250, 83–87 (1998). ArticleCASPubMed Google Scholar
Hsu, D. S. et al. Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry35, 13871–13877 (1996). ArticleCASPubMed Google Scholar
Van der Spek, P. J. et al. Cloning, tissue expression, and mapping of a human photolyase homolog with similarity to plant blue-light receptors. Genomics37, 177–182 (1996). ArticleCASPubMed Google Scholar
Thresher, R. J. et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science282, 1490–1494 (1998). ArticleCASPubMed Google Scholar
Feldman, J. F. & Hoyle, M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics75, 605–613 (1973). CASPubMedPubMed Central Google Scholar
Ballario, P. et al. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J.15, 1650–1657 (1996). ArticleCASPubMedPubMed Central Google Scholar
Linden, H. & Macino, G. White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J.16, 98–109 (1997). ArticleCASPubMedPubMed Central Google Scholar
Hall, M. D., Bennett, S. N. & Krissinger, W. A. Characterization of a newly isolated pigmentation mutant of Neurospora crassa. Georgia J. Sci.51, 27 (1993). Google Scholar
Schmitz, O., Katayama M., Williams, S. B., Kondo, T. & Golden, S. S. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science289, 765–768 (2000). Demonstration of clock function of a two-component response regulator and potential photoreceptor. ArticleCASPubMed Google Scholar