Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore (original) (raw)
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch.391, 85–100 (1981). ArticleCASPubMed Google Scholar
Armstrong, C. M. & Bezanilla, F. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol.70, 567–590 (1977). ArticleCASPubMed Google Scholar
Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science250, 533–538 (1990). ArticleCASPubMed Google Scholar
Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science250, 568–571 (1990). ArticleCASPubMed Google Scholar
Zhou, M., Morais-Cabral, J. H., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature411, 657–661 (2001). ArticleCASPubMed Google Scholar
Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, 2001). Google Scholar
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science280, 69–77 (1998).This landmark paper presents the first crystal structure of a P-loop-containing channel, KcsA. ArticleCASPubMed Google Scholar
Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J.66, 1061–1067 (1994). ArticleCASPubMedPubMed Central Google Scholar
Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science285, 100–102 (1999). ArticleCASPubMed Google Scholar
Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys.31, 239–295 (1998). ArticleCASPubMed Google Scholar
Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature313, 310–313 (1985).The first paper to describe a channel that is activated by the direct binding of cyclic nucleotides and to establish that cGMP is the second message involved in phototransduction. ArticleCASPubMed Google Scholar
Nakamura, T. & Gold, G. H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature325, 442–444 (1987). ArticleCASPubMed Google Scholar
Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci.19, 235–263 (1996). ArticleCASPubMed Google Scholar
Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature342, 762–766 (1989).A paper that presents the first cloning and functional expression of a CNG channel from bovine rod photoreceptors. ArticleCASPubMed Google Scholar
Dhallan, R. S., Yau, K. W., Schrader, K. A. & Reed, R. R. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature347, 184–187 (1990). ArticleCASPubMed Google Scholar
Ludwig, J., Margalit, T., Eismann, E., Lancet, D. & Kaupp, U. B. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett.270, 24–29 (1990). ArticleCASPubMed Google Scholar
Goulding, E. H. et al. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron8, 45–58 (1992). ArticleCASPubMed Google Scholar
Bonigk, W. et al. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron10, 865–877 (1993). ArticleCASPubMed Google Scholar
Chen, T. Y. et al. A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature362, 764–767 (1993). ArticleCASPubMed Google Scholar
Bradley, J., Li, J., Davidson, N., Lester, H. A. & Zinn, K. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc. Natl Acad. Sci. USA91, 8890–8894 (1994). ArticleCASPubMedPubMed Central Google Scholar
Liman, E. R. & Buck, L. B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron13, 611–621 (1994). ArticleCASPubMed Google Scholar
Korschen, H. G. et al. A 240 kDa protein represents the complete β subunit of the cyclic nucleotide-gated channel from rod photoreceptor. Neuron15, 627–636 (1995). ArticleCASPubMed Google Scholar
Gerstner, A., Zong, X., Hofmann, F. & Biel, M. Molecular cloning and functional characterization of a new modulatory cyclic nucleotide-gated channel subunit from mouse retina. J. Neurosci.20, 1324–1332 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ahmad, I., Redmond, L. J. & Barnstable, C. J. Developmental and tissue-specific expression of the rod photoreceptor cGMP-gated ion channel gene. Biochem. Biophys. Res. Commun.173, 463–470 (1990). ArticleCASPubMed Google Scholar
Marunaka, Y., Ohara, A., Matsumoto, P. & Eaton, D. C. Cyclic GMP-activated channel activity in renal epithelial cells (A6). Biochim. Biophys. Acta1070, 152–156 (1991). ArticleCASPubMed Google Scholar
Biel, M. et al. Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Lett.329, 134–138 (1993). ArticleCASPubMed Google Scholar
Biel, M. et al. Another member of the cyclic nucleotide-gated channel family, expressed in testis, kidney, and heart. Proc. Natl Acad. Sci. USA91, 3505–3509 (1994). ArticleCASPubMedPubMed Central Google Scholar
Distler, M., Biel, M., Flockerzi, V. & Hofmann, F. Expression of cyclic nucleotide-gated cation channels in non-sensory tissues and cells. Neuropharmacology33, 1275–1282 (1994). ArticleCASPubMed Google Scholar
Weyand, I. et al. Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm. Nature368, 859–863 (1994). ArticleCASPubMed Google Scholar
Bonigk, W., Muller, F., Middendorff, R., Weyand, I. & Kaupp, U. B. Two alternatively spliced forms of the cGMP-gated channel α-subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci.16, 7458–7468 (1996). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z. P., Akabas, M. H., Goulding, E. H., Karlin, A. & Siegelbaum, S. A. Exposure of residues in the cyclic nucleotide-gated channel pore: P region structure and function in gating. Neuron16, 141–149 (1996). ArticleCASPubMed Google Scholar
Becchetti, A., Gamel, K. & Torre, V. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines. J. Gen. Physiol.114, 377–392 (1999). ArticleCASPubMedPubMed Central Google Scholar
Becchetti, A. & Roncaglia, P. Cyclic nucleotide-gated channels: intra- and extracellular accessibility to Cd2+ of substituted cysteine residues within the P-loop. Pflugers Arch.440, 556–565 (2000).References32–34establish the accessibility of residues in the P region of CNG1. CASPubMed Google Scholar
Liu, J. & Siegelbaum, S. A. Change of pore helix conformational state upon opening of cyclic nucleotide-gated channels. Neuron28, 899–909 (2000).This paper presents evidence that the pore helix of CNG1 moves during gating, perhaps by rotating. ArticleCASPubMed Google Scholar
Flynn, G. E. & Zagotta, W. N. Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels. Neuron30, 689–698 (2001).A paper presenting evidence that the S6 of CNG1 moves during gating, but that the smokehole is not the gate. ArticleCASPubMed Google Scholar
Johnson, J. P. Jr & Zagotta, W. N. Rotational movement during cyclic nucleotide-gated channel opening. Nature412 , 917 –921 (2001 ).This paper presents evidence that the post-TM segments of CNG1 form a helix bundle and rotate during gating. ArticleCASPubMed Google Scholar
Yang, Y., Yan, Y. & Sigworth, F. J. How does the W434F mutation block current in Shaker potassium channels? J. Gen. Physiol.109, 779–789 (1997). ArticleCASPubMedPubMed Central Google Scholar
Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Macroscopic Na+ currents in the 'nonconducting' Shaker potassium channel mutant W434F. J. Gen. Physiol.112, 85–93 (1998). ArticleCASPubMedPubMed Central Google Scholar
Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature364, 61–64 (1993). ArticleCASPubMed Google Scholar
Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science258, 1152–1155 (1992). ArticleCASPubMed Google Scholar
Root, M. J. & MacKinnon, R. Identification of an external divalent cation-binding site in the pore of a cGMP-activated channel. Neuron11, 459–466 (1993). ArticleCASPubMed Google Scholar
Eismann, E., Muller, F., Heinemann, S. H. & Kaupp, U. B. A single negative charge within the pore region of a cGMP-gated channel controls rectification, Ca2+ blockage, and ionic selectivity. Proc. Natl Acad. Sci. USA91, 1109–1113 (1994). ArticleCASPubMedPubMed Central Google Scholar
Root, M. J. & MacKinnon, R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science265, 1852–1856 (1994). ArticleCASPubMed Google Scholar
Park, C. S. & MacKinnon, R. Divalent cation selectivity in a cyclic nucleotide-gated ion channel. Biochemistry34, 13328–13333 (1995). ArticleCASPubMed Google Scholar
Sesti, F., Eismann, E., Kaupp, U. B., Nizzari, M. & Torre, V. The multi-ion nature of the cGMP-gated channel from vertebrate rods. J. Physiol. (Lond.)487, 17–36 (1995). ArticleCASPubMed Google Scholar
Morrill, J. A. & MacKinnon, R. Isolation of a single carboxyl-carboxylate proton binding site in the pore of a cyclic nucleotide-gated channel. J. Gen. Physiol.114, 71–83 (1999). ArticleCASPubMedPubMed Central Google Scholar
Seifert, R., Eismann, E., Ludwig, J., Baumann, A. & Kaupp, U. B. Molecular determinants of a Ca2+-binding site in the pore of cyclic nucleotide-gated channels: S5/S6 segments control affinity of intrapore glutamates. EMBO J.18, 119–130 (1999). ArticleCASPubMedPubMed Central Google Scholar
Gavazzo, P., Picco, C., Eismann, E., Kaupp, U. B. & Menini, A. A point mutation in the pore region alters gating, Ca2+ blockage, and permeation of olfactory cyclic nucleotide-gated channels. J. Gen. Physiol.116, 311–326 (2000). ArticleCASPubMedPubMed Central Google Scholar
Taylor, W. R. & Baylor, D. A. Conductance and kinetics of single cGMP-activated channels in salamander rod outer segments. J. Physiol. (Lond.)483, 567–582 (1995). ArticleCASPubMed Google Scholar
Ruiz, M. L. & Karpen, J. W. Single cyclic nucleotide-gated channels locked in different ligand-bound states. Nature389, 389–392 (1997). ArticleCASPubMed Google Scholar
Hackos, D. H. & Korenbrot, J. I. Divalent cation selectivity is a function of gating in native and recombinant cyclic nucleotide-gated ion channels from retinal photoreceptors. J. Gen. Physiol.113, 799–818 (1999). ArticleCASPubMedPubMed Central Google Scholar
Schnetkamp, P. P. Sodium ions selectively eliminate the fast component of guanosine cyclic 3′,5′-phosphate induced Ca2+ release from bovine rod outer segment disks. Biochemistry26, 3249–3253 (1987). ArticleCASPubMed Google Scholar
Ildefonse, M. & Bennett, N. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J. Membr. Biol.123, 133–147 (1991). ArticleCASPubMed Google Scholar
Fodor, A. A., Black, K. D. & Zagotta, W. N. Tetracaine reports a conformational change in the pore of cyclic nucleotide-gated channels. J. Gen. Physiol.110, 591–600 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fodor, A. A., Gordon, S. E. & Zagotta, W. N. Mechanism of tetracaine block of cyclic nucleotide-gated channels. J. Gen. Physiol.109, 3–14 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bucossi, G. et al. Time-dependent current decline in cyclic GMP-gated bovine channels caused by point mutations in the pore region expressed in Xenopus oocytes. J. Physiol. (Lond.)493, 409–418 (1996). ArticleCASPubMed Google Scholar
Armstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol.58, 413–437 (1971). ArticleCASPubMedPubMed Central Google Scholar
Yeh, J. Z. & Armstrong, C. M. Immobilisation of gating charge by a substance that simulates inactivation. Nature273, 387–389 (1978). ArticleCASPubMed Google Scholar
Demo, S. D. & Yellen, G. Ion effects on gating of the Ca2+-activated K+ channel correlate with occupancy of the pore. Biophys. J.61, 639–648 (1992). ArticleCASPubMedPubMed Central Google Scholar
Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science285, 73–78 (1999).Electron paramagnetic resonance spectroscopy experiments indicate that the opening of KcsA involves a translation and rotation of the TM1 and TM2 segments. ArticleCASPubMed Google Scholar
Zheng, J. & Sigworth, F. J. Selectivity changes during activation of mutant Shaker potassium channels. J. Gen. Physiol.110, 101–117 (1997). ArticleCASPubMedPubMed Central Google Scholar
Chapman, M. L., VanDongen, H. M. & VanDongen, A. M. Activation-dependent subconductance levels in the drk1 K channel suggest a subunit basis for ion permeation and gating. Biophys. J.72, 708–719 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zheng, J. & Sigworth, F. J. Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels. J. Gen. Physiol.112, 457–474 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nature Neurosci.4, 239–246 (2001). ArticleCASPubMed Google Scholar
Loussouarn, G., Phillips, L. R., Masia, R., Rose, T. & Nichols, C. G. Flexibility of the Kir6.2 inward rectifier K+ channel pore. Proc. Natl Acad. Sci. USA98, 4227–4232 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lu, T., Nguyen, B., Zhang, X. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron22, 571–580 (1999). ArticleCASPubMed Google Scholar
Sadja, R., Smadja, K., Alagem, N. & Reuveny, E. Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron29, 669–680 (2001). ArticleCASPubMed Google Scholar
Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron29, 657–667 (2001). ArticleCASPubMed Google Scholar
Stotz, S. C. & Haynes, L. W. Block of the cGMP-gated cation channel of catfish rod and cone photoreceptors by organic cations. Biophys. J.71, 3136–3147 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kramer, R. H., Goulding, E. & Siegelbaum, S. A. Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domain. Neuron12, 655–662 (1994). ArticleCASPubMed Google Scholar
Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron14, 857–864 (1995). ArticleCASPubMed Google Scholar
Gordon, S. E. & Zagotta, W. N. A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors. Neuron14, 177–183 (1995).This paper was the first to identify the C-linker as an important region for CNG channel gating by localizing a Ni2+-binding site to the post-TM segment. ArticleCASPubMed Google Scholar
Broillet, M. C. & Firestein, S. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds. Neuron16, 377–385 (1996). ArticleCASPubMed Google Scholar
Gordon, S. E., Oakley, J. C., Varnum, M. D. & Zagotta, W. N. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry35, 3994–4001 (1996). ArticleCASPubMed Google Scholar
Gordon, S. E., Varnum, M. D. & Zagotta, W. N. Direct interaction between amino- and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron19, 431–441 (1997). ArticleCASPubMed Google Scholar
Brown, R. L., Snow, S. D. & Haley, T. L. Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J.75, 825–833 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zong, X., Zucker, H., Hofmann, F. & Biel, M. Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J.17, 353–362 (1998). ArticleCASPubMedPubMed Central Google Scholar
Paoletti, P., Young, E. C. & Siegelbaum, S. A. C-Linker of cyclic nucleotide-gated channels controls coupling of ligand binding to channel gating. J. Gen. Physiol.113, 17–34 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zheng, J. & Zagotta, W. N. Gating rearrangements in cyclic nucleotide-gated channels revealed by patch-clamp fluorometry. Neuron28, 369–374 (2000). ArticleCASPubMed Google Scholar
Gordon, S. E. & Zagotta, W. N. Subunit interactions in coordination of Ni2+ in cyclic nucleotide-gated channels. Proc. Natl Acad. Sci. USA92, 10222–10226 (1995). ArticleCASPubMedPubMed Central Google Scholar
Kneller, D. G., Cohen, F. E. & Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol.214, 171–182 (1990). ArticleCASPubMed Google Scholar
Cortes, D. M., Cuello, L. G. & Perozo, E. Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J. Gen. Physiol.117, 165–180 (2001).Electron paramagnetic resonance spectroscopy experiments show that the post-TM region of KcsA forms a helical bundle. ArticleCASPubMedPubMed Central Google Scholar
Schumacher, M. A., Rivard, A. F., Bachinger, H. P. & Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature410, 1120–1124 (2001).This paper presents the crystal structure of the post-TM region of SK channels while bound to calmodulin. ArticleCASPubMed Google Scholar
Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science282, 2220–2226 (1998). ArticleCASPubMed Google Scholar
Liu, D. T., Tibbs, G. R., Paoletti, P. & Siegelbaum, S. A. Constraining ligand-binding site stoichiometry suggests that a cyclic-nucleotide-gated channel is composed of two functional dimers. Neuron21, 235–248 (1998).A paper that presents intriguing results, indicating that CNG channels gate as if formed as a dimer-of-dimers. ArticleCASPubMed Google Scholar
Shammat, I. M. & Gordon, S. E. Stoichiometry and arrangement of subunits in rod cyclic nucleotide-gated channels. Neuron23, 809–819 (1999). ArticleCASPubMed Google Scholar
Scott, S. P., Weber, I. T., Harrison, R. W., Carey, J. & Tanaka, J. C. A functioning chimera of the cyclic nucleotide-binding domain from the bovine retinal rod ion channel and the DNA-binding domain from catabolite gene-activating protein. Biochemistry40, 7464–7473 (2001). ArticleCASPubMed Google Scholar
Jiang, Y., Pico, A., Cadene, M., Chait, B. T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron29, 593–601 (2001). ArticleCASPubMed Google Scholar
Ildefonse, M., Crouzy, S. & Bennett, N. Gating of retinal rod cation channel by different nucleotides: comparative study of unitary currents. J. Membr. Biol.130, 91–104 (1992). ArticleCASPubMed Google Scholar
Karpen, J. W., Brown, R. L., Stryer, L. & Baylor, D. A. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods. J. Gen. Physiol.101, 1–25 (1993). ArticleCASPubMed Google Scholar
Sompornpisut, P., Liu, Y.-S. & Perozo, E. Calculation of rigid body conformational changes using restraint-driven cartesian transformations. Biophys. J. (in the press).
Weber, I. T. & Steitz, T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol.198, 311–326 (1987).This paper presents the crystal structure of CAP, showing the CNBD bound to cAMP. ArticleCASPubMed Google Scholar
Ackers, G. K., Doyle, M. L., Myers, D. & Daugherty, M. A. Molecular code for cooperativity in hemoglobin. Science255, 54–63 (1992). ArticleCASPubMed Google Scholar
Altenhofen, W. et al. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc. Natl Acad. Sci. USA88, 9868–9872 (1991). ArticleCASPubMedPubMed Central Google Scholar
Varnum, M. D., Black, K. D. & Zagotta, W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron15, 619–625 (1995).The authors propose a mechanism for cyclic nucleotide selectivity and conformational change in the CNBD of CNG channels. ArticleCASPubMed Google Scholar
Scott, S. P., Harrison, R. W., Weber, I. T. & Tanaka, J. C. Predicted ligand interactions of 3′,5′-cyclic nucleotide-gated channel binding sites: comparison of retina and olfactory binding site models. Protein Eng.9, 333–344 (1996). ArticleCASPubMed Google Scholar
Tibbs, G. R., Goulding, E. H. & Siegelbaum, S. A. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature386, 612–615 (1997). ArticleCASPubMed Google Scholar
Scott, S. P. & Tanaka, J. C. Three residues predicted by molecular modeling to interact with the purine moiety alter ligand binding and channel gating in cyclic nucleotide-gated channels. Biochemistry37, 17239–17252 (1998). ArticleCASPubMed Google Scholar
Matulef, K., Flynn, G. E. & Zagotta, W. N. Molecular rearrangements in the ligand-binding domain of cyclic nucleotide-gated channels. Neuron24, 443–452 (1999). ArticleCASPubMed Google Scholar
Sunderman, E. R. & Zagotta, W. N. Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J. Gen. Physiol.113, 621–640 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sunderman, E. R. & Zagotta, W. N. Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J. Gen. Physiol.113, 601–620 (1999). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron19, 175–184 (1997).This paper presents evidence that the gate of Shaker K+ channels is located at the bottom of the S6, near the smokehole. ArticlePubMed Google Scholar
Del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature403, 321–325 (2000). ArticleCASPubMed Google Scholar
Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18, 2714–2723 (1997). ArticleCASPubMed Google Scholar