Knockout mice: a paradigm shift in modern immunology (original) (raw)
Maslow, A. H. Psychology of Science: A Reconnaissance (Harper & Row, New York, 1966). Google Scholar
Koller, B. H. & Smithies, O. Altering genes in animals by gene targeting. Annu. Rev. Immunol.10, 705–730 (1992). CASPubMed Google Scholar
Koller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science248,1227–1230 (1990). CASPubMed Google Scholar
Zijlstra, M. et al. β2-microglobulin deficient mice lack CD4−8+ cytolytic T cells. Nature344, 742–746 (1990).References3and4were the first reports of knockout mice with relevance to immunology. CASPubMed Google Scholar
Fung-Leung, W. P. et al. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell65, 443–449 (1991). CASPubMed Google Scholar
Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature350, 423–426 (1991). CASPubMed Google Scholar
Mak, T. W. (ed) The Gene Knockout FactsBook (Academic, San Diego, 1998). Google Scholar
Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA90, 4528–4532 (1993).This paper contained the first description of the RAG complementation assay. CASPubMedPubMed Central Google Scholar
Gu, H., Marth, J. D., Orban, P. C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science265, 103–106 (1994).This report describes the first use of the Cre/loxPsystem for tissue-specific deletion in lymphocytes. CASPubMed Google Scholar
Mak, T. W. et al. Brca1 is required for T cell lineage development but not TCR loci rearrangement. Nature Immunol.1, 77–82 (2000). CAS Google Scholar
Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity14, 523–534 (2001). CASPubMed Google Scholar
Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science285, 2122–2125 (1999). CASPubMed Google Scholar
Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science269, 1427–1429 (1995). CASPubMed Google Scholar
Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature407, 636–642 (2000). CASPubMed Google Scholar
Pannetier, C., Hu-Li, J. & Paul, W. E. Bias in the expression of IL-4 alleles: the use of T cells from a GFP knock-in mouse. Cold Spring Harb. Symp. Quant. Biol.64, 599–602 (1999). CASPubMed Google Scholar
Hu-Li, J. et al. Regulation of expression of IL-4 alleles: analysis using a chimeric GFP/IL-4 gene. Immunity14, 1–11 (2001). CASPubMed Google Scholar
Litzenburger, T. et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med.188, 169–180 (1998). CASPubMedPubMed Central Google Scholar
Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell103, 1059–1070 (2000). CASPubMed Google Scholar
Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell76, 17–27 (1994). CASPubMed Google Scholar
Sebzda, E. et al. Positive and negative thymocyte selection induced by different concentrations of a single peptide. Science263, 1615–1618 (1994). CASPubMed Google Scholar
Ashton-Rickardt, P. G. et al. Evidence for a differential avidity model of T cell selection in the thymus. Cell76, 651–663 (1994).References19–21were the first to provide evidence that an affinity/avidity model governs thymocyte selection. CASPubMed Google Scholar
Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity5, 217–228 (1996). ArticleCASPubMed Google Scholar
Tanchot, C., Lemonnier, F. A., Pérarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science276, 2057–2062 (1997). CASPubMed Google Scholar
Zheng, T. S., Hunot, S., Kuida, K. & Flavell, R. A. Caspase knockouts: matters of life and death. Cell Death Differ.6, 1043–1053 (1999). CASPubMed Google Scholar
Rengarajan, J., Szabo, S. J. & Glimcher, L. H. Transcriptional regulation of TH1/TH2 polarization. Immunol. Today21, 479–483 (2000). CASPubMed Google Scholar
Luther, S. A. & Cyster, J. G. Chemokines as regulators of T cell differentiation. Nature Immunol.2, 102–107 (2001). CAS Google Scholar
O'Garra, A. & Arai, N. The molecular basis of T helper 1 and T helper 2 differentiation. Trends Cell Biol.10, 542–550 (2000). CASPubMed Google Scholar
Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA97, 8841–8848 (2000). CASPubMedPubMed Central Google Scholar
Newton, K. & Strasser, A. Cell death control in lymphocytes. Adv. Immunol.76, 179–226 (2000). CASPubMed Google Scholar
Dustin, M. L., Allen, P. M. & Shaw, A. S. Environmental control of immunological synapse formation and duration. Trends Immunol.22, 192–194 (2001). CASPubMed Google Scholar
Leonard, W. J. Role of Jak kinases and STATs in cytokine signal transduction. Int. J. Hematol.73, 271–277 (2001). CASPubMed Google Scholar
Robey, E. Regulation of T cell fate by Notch. Annu. Rev. Immunol.17, 283–295 (1999). CASPubMed Google Scholar
Molina, T. J. et al. Profound block in thymocyte development in mice lacking p56_lck_. Nature357, 161–164 (1992).This report describes the first mutation of a signalling molecule using knockout mice. The data unequivocally showed that p56lckis crucial for T-cell development and activationin vivo. CASPubMed Google Scholar
Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature360, 225–231 (1992). CASPubMed Google Scholar
Mombaerts, P. et al. RAG-1 deficient mice have no mature B and T lymphocytes. Cell68, 869–877 (1992). CASPubMed Google Scholar
Shinkai, Y. et al. RAG-2 deficient mice lack mature lymphocytes owing to inablility to initiate V(D)J rearrangement. Cell68, 855–867 (1992). CASPubMed Google Scholar
Fehling, H. J. & von Boehmer, H. Early αβ T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol.9, 263–275 (1997). CASPubMed Google Scholar
Appleby, M. W. et al. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell70, 751–763 (1992). CASPubMed Google Scholar
Stein, P. L., Lee, H. M., Rich, S. & Soriano, P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell70, 741–750 (1992). CASPubMed Google Scholar
Groves, T. et al. Fyn can partially substitute for Lck in T lymphocyte development. Immunity5, 417–428 (1996). CASPubMed Google Scholar
van Oers, N. S., Lowin-Kropf, B., Finlay, D., Connolly, K. & Weiss, A. αβ T cell development is abolished in mice lacking both Lck and Fyn protein tyrosine kinases. Immunity5, 429–436 (1996). CASPubMed Google Scholar
Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature394, 901–904 (1998). CASPubMed Google Scholar
Schmedt, C. & Tarakhovsky, A. Autonomous maturation of α/β T lineage cells in the absence of COOH-terminal Src kinase (Csk). J. Exp. Med.193, 815–825 (2001). CASPubMedPubMed Central Google Scholar
Cheng, A. M. et al. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc. Natl Acad. Sci. USA94, 9797–9801 (1997). CASPubMedPubMed Central Google Scholar
Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature376, 435–438 (1995). CASPubMed Google Scholar
Mallick-Wood, C. A. et al. Disruption of epithelial γδ T cell repertoires by mutation of the Syk tyrosine kinase. Proc. Natl Acad. Sci. USA93, 9704–9709 (1996). CASPubMedPubMed Central Google Scholar
Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science281, 416–419 (1998). CASPubMed Google Scholar
Pivniouk, V. et al. 1998. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell94, 229–238 (1998). CASPubMed Google Scholar
Zhang, W. et al. Essential role of LAT in T cell development. Immunity10, 323–332 (1999). CASPubMed Google Scholar
Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science291, 1987–1991 (2001). CASPubMed Google Scholar
Love, P. E. et al. T cell development in mice that lack the ζ chain of the T cell antigen receptor complex. Science261, 918–921 (1993). CASPubMed Google Scholar
Ohno, H. et al. Developmental and functional impairment of T cells in mice lacking CD3ζ chains. EMBO J.12, 4357–4366 (1993). CASPubMedPubMed Central Google Scholar
Liu, C.-P. et al. Abnormal T cell development in CD3-ζ−/− mutant mice and identification of a novel T cell population in the intestine. EMBO J.12, 4863–4875 (1993). CASPubMedPubMed Central Google Scholar
Shores, E. W. et al. T cell development in mice lacking all T cell receptor ζ family members (ζ,η, and FcɛRIγ). J. Exp. Med.187, 1093–1101 (1998). CASPubMedPubMed Central Google Scholar
Zhang, R., Alt, F., Davidson, L., Orkin, S. H. & Swat, W. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature374, 470–473 (1995). CASPubMed Google Scholar
Fischer, K. D. et al. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature374, 474–477 (1995). CASPubMed Google Scholar
Tarakhovsky, A. et al. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature374, 467–470 (1995). CASPubMed Google Scholar
Dave, V. P. et al. CD3δ deficiency arrests development of the αβ but not the γδ T cell lineage. EMBO J.16, 1360–1370 (1997). CASPubMedPubMed Central Google Scholar
Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell74, 143–156 (1993). CASPubMed Google Scholar
Byth, K. F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and in B cell maturation. J. Exp. Med.183, 1707–1718 (1996). CASPubMed Google Scholar
Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature376, 435–438 (1995). CASPubMed Google Scholar
Turner, M. et al. A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes. Immunity7, 451–460 (1997). CASPubMed Google Scholar
Liao, X. & Littman, R. Altered T cell receptor signaling and disrupted T cell development in mice lacking Itk. Immunity3, 757–769 (1995). CASPubMed Google Scholar
Schaeffer, E. M. et al. Tec family kinases modulate thresholds for thymocyte development and selection. J. Exp. Med.192, 987–1000 (2000). CASPubMedPubMed Central Google Scholar
Pagès, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science286, 1374–1377 (1999). PubMed Google Scholar
Dower, N. A. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol.1, 317–322 (2000). CAS Google Scholar
Delgado, P., Fernández, E., Dave, V., Kappes, D. & Alarcon, B. CD3δcouples T-cell receptor signalling to ERK activation and thymocyte positive selection. Nature406, 426–430 (2000). CASPubMed Google Scholar
Rivera, R. R., Johns, C. P., Quan, J., Johnson, R. S. & Murre, C. Thymocyte selection is regulated by the helix–loop–helix inhibitor protein, ld3. Immunity12, 17–26 (2000). CASPubMed Google Scholar
Bain, G. et al. Regulation of the helix–loop–helix proteins, E2A and Id3, by the ras-ERK MAPK cascade. Nature Immunol.2, 165–171 (2001). CAS Google Scholar
Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol.17, 829–874 (1999). CASPubMed Google Scholar
Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell75, 83–97 (1993). CASPubMed Google Scholar
White, L. C. et al. Regulation of LMP2 and TAP1 genes by IRF-1 explains the paucity of CD8+ T cells in IRF-1−/− mice. Immunity5, 365–376 (1996). CASPubMed Google Scholar
Penninger, J. M. et al. The interferon regulatory transcription factor IRF-1 controls positive and negative selection of CD8+ thymocytes. Immunity7, 243–254 (1997). CASPubMed Google Scholar
Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science267, 1506–1510 (1995). CASPubMed Google Scholar
Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl Acad. Sci. USA92, 4763–4767 (1995). CASPubMedPubMed Central Google Scholar
Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science288, 2369–2373 (2000). CASPubMed Google Scholar
Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity9, 295–304 (1998). CASPubMed Google Scholar
Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature404, 402–407 (2000). CASPubMed Google Scholar
Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell104, 33–42 (2001). CASPubMed Google Scholar
Bromley, S. K. et al. The immunological synapse. Annu. Rev. Immunol.19, 375–396 (2001). CASPubMed Google Scholar
Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol.8, 563–572 (1998). CASPubMed Google Scholar
Fischer, K. D. et al. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol.8, 554–562 (1998).References84and85contain the first evidence that TCR clustering and actin cap formation are essential for T-cell activation. These data also provided the genetic validation that immune synapse formation is indeed essential for T-cell activation. CASPubMed Google Scholar
Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity9, 81–91 (1998). CASPubMed Google Scholar
Zhang, J. et al. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott–Aldrich syndrome protein-deficient lymphocytes. J. Exp. Med.190, 1329–1342 (1999). CASPubMedPubMed Central Google Scholar
Wulfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc. Natl Acad. Sci. USA97, 10150–10155 (2000). CASPubMedPubMed Central Google Scholar
Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature395, 82–86 (1998). CASPubMed Google Scholar
Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol.2, 294–307 (2001). CAS Google Scholar
Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signaling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol.18, 4872–4882 (1998). CASPubMedPubMed Central Google Scholar
Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA95, 15547–15552 (1998). CASPubMedPubMed Central Google Scholar
Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature403, 211–216 (2000). CASPubMed Google Scholar
Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature403, 216–220 (2000). CASPubMed Google Scholar
Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity13, 463–473 (2000). CASPubMed Google Scholar
Kundig, T. M. H. et al. Immune responses in interleukin-2-deficient mice. Science262, 1059–1061 (1993). CASPubMed Google Scholar
Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell75, 253–261 (1993). CASPubMed Google Scholar
Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science268,1472–1476 (1995). CASPubMed Google Scholar
Willerford, D. M. et al. Interleukin-2 receptor α-chain regulates the size and content of the peripheral lymphoid compartment. Immunity3, 521–530 (1995). CASPubMed Google Scholar
Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science261, 609–612 (1993). CASPubMed Google Scholar
Borriello, F. et al. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Immunity6, 303–313 (1997). CASPubMed Google Scholar
Mittrücker, H.-W., Shahinian, A., Bouchard, D., Kündig, T. M. & Mak, T. W. Induction of unresponsiveness and impaired T cell expansion by staphylococcal enterotoxin B in CD28-deficient mice. J. Exp. Med.183, 2481–2488 (1996). PubMed Google Scholar
Kündig, T. M. et al. Duration of TCR stimulation determines costimulatory requirements of T cells. Immunity5, 41–52 (1996). PubMed Google Scholar
Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity7, 549–557 (1997). CASPubMed Google Scholar
Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science273, 104–106 (1996). CASPubMed Google Scholar
Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science270, 985–988 (1995). CASPubMed Google Scholar
Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of Ctla-4. Immunity3, 541–547 (1995).References106and107showed that CTLA4 (CD152) is a negative regulator of T-cell activation and that mutation of such a molecule results in severe disease and premature death due to T-cell dysregulation. CASPubMed Google Scholar
Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med.192, 295–302 (2000). CASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med.192, 303–310 (2000). CASPubMedPubMed Central Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). CASPubMed Google Scholar
Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature409, 105–109 (2001). CASPubMed Google Scholar
McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature409, 31–32 (2001). Google Scholar
Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature409, 97–101 (2001). CASPubMed Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999). CASPubMed Google Scholar
Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science291, 319–322 (2001). CASPubMed Google Scholar
Xu, J. et al. Mice deficient for the CD40 ligand. Immunity1, 423–431 (1994). CASPubMed Google Scholar
Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity1, 167–178 (1994). CASPubMed Google Scholar
Grewal, I. S., Xu, J. & Flavell, R. A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature378, 617–620 (1995). CASPubMed Google Scholar
Grewal, I. S. et al. Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science273, 1864–1867 (1996). CASPubMed Google Scholar
Yang, Y. & Wilson, J. M. CD40 ligand-dependent T cell activation: requirement of B7–CD28 signaling through CD40. Science273, 1862–1864 (1996). CASPubMed Google Scholar
Chen, A. I. et al. Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity11, 689–698 (1999). CASPubMed Google Scholar
Kopf, M. et al. OX40-deficient mice are defective in TH cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity11, 699–708 (1999). CASPubMed Google Scholar
Murata, K. et al. Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J. Exp. Med.191, 365–374 (2000). CASPubMedPubMed Central Google Scholar