Toll-like receptors and innate immunity (original) (raw)
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989).This is a landmark paper that introduced the concepts of pattern recognition and the role of innate immune recognition in the control of adaptive immunity. CASPubMed Google Scholar
Janeway, C. A. Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today13, 11–16 (1992). ArticleCASPubMed Google Scholar
Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol.9, 4–9 (1997). CASPubMed Google Scholar
Hashimoto, C., Hudson, K. L. & Anderson, K. V. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell52, 269–279 (1988). CASPubMed Google Scholar
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388, 394–397 (1997). ArticleCASPubMed Google Scholar
Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA95, 588–593 (1998). CASPubMedPubMed Central Google Scholar
Kobe, B. & Deisenhofer, J. Proteins with leucine-rich repeats. Curr. Opin. Struct. Biol.5, 409–416 (1995). CASPubMed Google Scholar
Aravind, L., Dixit, V. M. & Koonin, E. V. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science291, 1279–1284 (2001). CASPubMed Google Scholar
Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science278, 1612–1615 (1997). CASPubMed Google Scholar
Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell2, 253–258 (1998). ArticleCASPubMed Google Scholar
Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity7, 837–847 (1997). CASPubMed Google Scholar
Burns, K. et al. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem.273, 12203–12209 (1998). CASPubMed Google Scholar
Horng, T., Barton, G. M. & Medzhitov, R. TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol.2, 835–841 (2001). CAS Google Scholar
Anderson, K. V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol.12, 13–19 (2000). CASPubMed Google Scholar
Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Annu. Rev. Cell Dev. Biol.12, 393–416 (1996). CASPubMed Google Scholar
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell86, 973–983 (1996).This is a seminal study that showed the role of the Toll pathway inDrosophilaimmunity. CASPubMed Google Scholar
Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev.13, 792–797 (1999). CASPubMedPubMed Central Google Scholar
Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity12, 569–580 (2000). CASPubMed Google Scholar
Levashina, E. A. et al. Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science285, 1917–1919 (1999). CASPubMed Google Scholar
Khush, R. S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol.22, 260–264 (2001). CASPubMed Google Scholar
Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA94, 14614–14619 (1997).This study indicated thatDrosophilacan discriminate between different pathogen classes and induce an appropriate set of antimicrobial peptides. CASPubMedPubMed Central Google Scholar
Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA92, 9465–9469 (1995). CASPubMedPubMed Central Google Scholar
Imler, J. L. & Hoffmann, J. A. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. Microbiol.3, 16–22 (2000). CASPubMed Google Scholar
Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defence and can promote apoptosis. Dev. Cell1, 503–514 (2001) ArticleCASPubMed Google Scholar
Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol.10, 781–784 (2000). CASPubMed Google Scholar
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep.1, 353–358 (2000). CASPubMedPubMed Central Google Scholar
Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev.15, 104–110 (2001). CASPubMedPubMed Central Google Scholar
Silverman, N. et al. A Drosophila IκB kinase complex required for relish cleavage and antibacterial immunity. Genes Dev.14, 2461–2471 (2000). CASPubMedPubMed Central Google Scholar
Rutschmann, S. et al. Role of Drosophila IKK-γ in a Toll-independent antibacterial immune response. Nature Immunol.1, 342–347 (2000). CAS Google Scholar
Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev.15, 1900–1912 (2001). CASPubMedPubMed Central Google Scholar
Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell4, 827–837 (1999). CASPubMed Google Scholar
Chen, P., Rodriguez, A., Erskine, R., Thach, T. & Abrams, J. M. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev. Biol.201, 202–216 (1998). CASPubMed Google Scholar
Karin, M. & Delhase, M. The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin. Immunol.12, 85–98 (2000). CASPubMed Google Scholar
Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA93, 10343–10347 (1996). CASPubMedPubMed Central Google Scholar
Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. From the cover: Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA97, 10520–10525 (2000). CASPubMedPubMed Central Google Scholar
Williams, M. J., Rodriguez, A., Kimbrell, D. A. & Eldon, E. D. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J.16, 6120–6130 (1997). CASPubMedPubMed Central Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). CAS Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282, 2085–2088 (1998). ArticleCASPubMed Google Scholar
Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med.189, 615–625 (1999); erratum 189, 1518 (1999). | PubMed | CASPubMedPubMed Central Google Scholar
Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol.162, 3749–3752 (1999).References38–40describe the first indication of TLR4 functionin vivo. CASPubMed Google Scholar
Wright, S. D., Tobias, P. S., Ulevitch, R. J. & Ramos, R. A. Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J. Exp. Med.170, 1231–1241 (1989). CASPubMed Google Scholar
Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science249, 1431–1433 (1990). CASPubMed Google Scholar
Haziot, A. et al. Resistance to endotoxin shock and reduced dissemination of Gram-negative bacteria in CD14-deficient mice. Immunity4, 407–414 (1996). CASPubMed Google Scholar
Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med.189, 1777–1782 (1999). CASPubMedPubMed Central Google Scholar
Schromm, A. B. et al. Molecular genetic analysis of an endotoxin nonresponder mutant cell line. A point mutation in a conserved region of md-2 abolishes endotoxin-induced signaling. J. Exp. Med.194, 79–88 (2001). CASPubMedPubMed Central Google Scholar
Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest.105, 497–504 (2000). CASPubMedPubMed Central Google Scholar
Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and Toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA97, 2163–2167 (2000). CASPubMedPubMed Central Google Scholar
Da Silva Correia, J., Soldau, K., Christen, U., Tobias, P. S. & Ulevitch, R. J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem.276, 21129–21135 (2001). CASPubMed Google Scholar
Miyake, K., Yamashita, Y., Ogata, M., Sudo, T. & Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J. Immunol.154, 3333–3340 (1995). CASPubMed Google Scholar
Chan, V. W. et al. The molecular mechanism of B cell activation by Toll-like receptor protein RP-105. J. Exp. Med.188, 93–101 (1998). CASPubMedPubMed Central Google Scholar
Miyake, K. et al. Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J. Immunol.161, 1348–1353 (1998). CASPubMed Google Scholar
Ogata, H. et al. The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells. J. Exp. Med.192, 23–29 (2000). CASPubMedPubMed Central Google Scholar
Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cel wall components. Immunity11, 443–451 (1999). CASPubMed Google Scholar
Means, T. K. et al. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol.163, 3920–3927 (1999). CASPubMed Google Scholar
Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol.164, 558–561 (2000). CASPubMed Google Scholar
Li, M. et al. An essential role of the NF-κB/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J. Immunol.166, 7128–7135 (2001). CASPubMed Google Scholar
Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol.1, 398–401 (2000). CAS Google Scholar
Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc. Natl Acad. Sci. USA97, 10162–10167 (2000). CASPubMedPubMed Central Google Scholar
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem.274, 17406–17409 (1999). CASPubMed Google Scholar
Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol.164, 554–557 (2000). CASPubMed Google Scholar
Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science285, 736–739 (1999). CASPubMed Google Scholar
Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science285, 732–736 (1999). CASPubMed Google Scholar
Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol.163, 6748–6755 (1999). CASPubMed Google Scholar
Underhill, D. M., Ozinsky, A., Smith, K. D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA96, 14459–14463 (1999). CASPubMedPubMed Central Google Scholar
Campos, M. A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol.167, 416–423 (2001). CASPubMed Google Scholar
Hajjar, A. M. et al. Cutting edge: functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol.166, 15–19 (2001). CASPubMed Google Scholar
Underhill, D. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature401, 811–815 (1999). CASPubMed Google Scholar
Werts, C. et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nature Immunol.2, 346–352 (2001). CAS Google Scholar
Hirschfeld, M. et al. Signaling by Toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun.69, 1477–1482 (2001). CASPubMedPubMed Central Google Scholar
Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA97, 13766–13771 (2000). CASPubMedPubMed Central Google Scholar
Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol.13, 933–940 (2001). CASPubMed Google Scholar
Muzio, M. et al. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol.164, 5998–6004 (2000). CASPubMed Google Scholar
Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature413, 732–738 (2001). CASPubMed Google Scholar
Williams, B. R. PKR; a sentinel kinase for cellular stress. Oncogene18, 6112–6120 (1999). CASPubMed Google Scholar
Chu, W. M. et al. JNK2 and IKKβ are required for activating the innate response to viral infection. Immunity11, 721–731 (1999). CASPubMed Google Scholar
Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410, 1099–1103 (2001). CASPubMed Google Scholar
Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature410, 331–337 (2001). CASPubMed Google Scholar
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol.167, 1882–1885 (2001). CASPubMed Google Scholar
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature408, 740–745 (2000). CASPubMed Google Scholar
Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature374, 546–549 (1995). CASPubMed Google Scholar
Hacker, H. et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J.17, 6230–6240 (1998). CASPubMedPubMed Central Google Scholar
Thieblemont, N. & Wright, S. D. Transport of bacterial lipopolysaccharide to the Golgi apparatus. J. Exp. Med.190, 523–534 (1999). CASPubMedPubMed Central Google Scholar
Krieg, A. M. The role of CpG motifs in innate immunity. Curr. Opin. Immunol.12, 35–43 (2000). CASPubMed Google Scholar
Bauer, S. et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl Acad. Sci. USA98, 9237–9242 (2001). CASPubMedPubMed Central Google Scholar
Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science291, 1544–1547 (2001). CASPubMed Google Scholar
Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biol.2, 346–351 (2000). CASPubMed Google Scholar
Bulut, Y., Faure, E., Thomas, L., Equils, O. & Arditi, M. Cooperation of Toll-Like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol.167, 987–994 (2001). CASPubMed Google Scholar
Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science271, 1128–1131 (1996). CASPubMed Google Scholar
Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature383, 443–446 (1996). CASPubMed Google Scholar
Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev.13, 1015–1024 (1999). CASPubMedPubMed Central Google Scholar
Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity9, 143–150 (1998). CASPubMed Google Scholar
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity11, 115–122 (1999). CASPubMed Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001). CASPubMed Google Scholar
Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol.1, 533–540 (2000). CAS Google Scholar
Schnare, M., Holt, A. C., Takeda, K., Akira, S. & Medzhitov, R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol.10, 1139–1142 (2000). CASPubMed Google Scholar
Kaisho, T., Takeuchi, O., Kawai, T., Hoshino, K. & Akira, S. Endotoxin-induced maturation of Myd88-deficient dendritic cells. J. Immunol.166, 5688–5694 (2001). CASPubMed Google Scholar
Seki, E. et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1β. J. Immunol.166, 2651–2657 (2001). CASPubMed Google Scholar
Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature413, 78–83 (2001). CASPubMed Google Scholar
Goh, K. C., deVeer, M. J. & Williams, B. R. The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J.19, 4292–4297 (2000). CASPubMedPubMed Central Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). CASPubMed Google Scholar
Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol.2, 947–950 (2001). CAS Google Scholar
Holmskov, U. L. Collectins and collectin receptors in innate immunity. APMIS Suppl.100, 1–59 (2000). CASPubMed Google Scholar
Gewurz, H., Mold, C., Siegel, J. & Fiedel, B. C-reactive protein and the acute phase response. Adv. Intern. Med.27, 345–372 (1982). CASPubMed Google Scholar
Schwalbe, R. A., Dahlback, B., Coe, J. E. & Nelsestuen, G. L. Pentraxin family of proteins interact specifically with phosphorylcholine and/or phosphorylethanolamine. Biochemistry31, 4907–4915 (1992). CASPubMed Google Scholar
Fraser, I. P., Koziel, H. & Ezekowitz, R. A. The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin. Immunol.10, 363–372 (1998). CASPubMed Google Scholar
Pearson, A. M. Scavenger receptors in innate immunity. Curr. Opin. Immunol.8, 20–28 (1996). CASPubMed Google Scholar
Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell80, 603–609. (1995). CASPubMed Google Scholar
Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem.274, 14560–14567 (1999). CASPubMed Google Scholar
Bertin, J. et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-κB. J. Biol. Chem.274, 12955–12958 (1999). CASPubMed Google Scholar