Hayflick, L. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961). CASPubMed Google Scholar
Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965). ArticleCASPubMed Google Scholar
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA92, 9363–9367 (1995). CASPubMedPubMed Central Google Scholar
Artandi, S. E. & DePinho, R. A. A critical role for telomeres in suppressing and facilitating carcinogenesis. Curr. Opin. Genet. Dev.10, 39–46 (2000). CASPubMed Google Scholar
Hara, E., Tsurui, H., Shinozaki, A., Nakada, S. & Oda, K. Cooperative effect of antisense-Rb and antisense-p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. Biochem. Biophys. Res. Commun.179, 528–534 (1991). CASPubMed Google Scholar
Shay, J. W., Pereira-Smith, O. M. & Wright, W. E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res.196, 33–39 (1991). CASPubMed Google Scholar
Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts. Nature345, 458–460 (1990). CASPubMed Google Scholar
Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349–352 (1998). CASPubMed Google Scholar
Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol.8, 279–282 (1998).References8and9show how telomerase expression immortalizes human cells. CASPubMed Google Scholar
Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature396, 84–88 (1998).Human epithelial cells seem to have, in addition to telomere shortening, a second checkpoint that determines replicative lifespan. CASPubMed Google Scholar
Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev.8, 2540–2551 (1994). CASPubMed Google Scholar
Robles, S. J. & Adami, G. R. Agents that cause DNA double strand breaks lead to p16INK4A enrichment and the premature senescence of normal fibroblasts. Oncogene16, 1113–1123 (1998). CASPubMed Google Scholar
Chen, Q. & Ames, B. N. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc. Natl Acad. Sci. USA91, 4130–4134 (1994). CASPubMedPubMed Central Google Scholar
Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature408, 239–247 (2000). CASPubMed Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4A. Cell88, 593–602 (1997).Oncogenic RAS expression in normal cells triggers premature senescence. ArticleCASPubMed Google Scholar
Sherr, C. J. & DePinho, R. A. Cellular senescence: mitotic clock or culture shock? Cell102, 407–410 (2000). CASPubMed Google Scholar
Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nature Med.6, 849–851 (2000). CASPubMed Google Scholar
Mathon, N. F., Malcolm, D. S., Harrisingh, M. C., Cheng, L. & Lloyd, A. C. Lack of replicative senescence in normal rodent glia. Science291, 872–875 (2001). CASPubMed Google Scholar
Tang, D. G., Tokumoto, Y. M., Apperly, J. A., Lloyd, A. C. & Raff, M. C. Lack of replicative senescence in cultured rat oligodendrocyte precursor cells. Science291, 868–871 (2001). CASPubMed Google Scholar
Shay, J. W. & Wright, W. E. Aging: when do telomeres matter? Science291, 839–840 (2001). CASPubMed Google Scholar
Ramirez, R. D. et al. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev.15, 398–403 (2001).References18, 19and21show that culture conditions, rather than an intrinsic clock, limit the proliferative lifespan of many cell types. CASPubMedPubMed Central Google Scholar
Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science266, 2011–2015 (1994). CASPubMed Google Scholar
Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med.3, 1271–1274 (1997). CASPubMed Google Scholar
Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature346, 866–868 (1990). ArticleCASPubMed Google Scholar
Sommerfeld, H. J. et al. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res.56, 218–222 (1996). CASPubMed Google Scholar
Hahn, W. C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nature Med.5, 1164–1170 (1999).Shows that cancer cells need to maintain telomerase activity. CASPubMed Google Scholar
Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature400, 464–468 (1999).How many genetic changes to transform a normal human cell? CASPubMed Google Scholar
Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997).Mouse cells lacking telomerase senesce at the same rate, are immortalized and are as transformable as wild-type cells. CASPubMed Google Scholar
Artandi, S. E. & DePinho, R. A. Mice without telomerase: what can they teach us about human cancer? Nature Med.6, 852–855 (2000). CASPubMed Google Scholar
Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature392, 569–574 (1998). CASPubMed Google Scholar
Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999).Documents the unexpected finding that telomerase-deficient mice have an increased predisposition to cancer. CASPubMed Google Scholar
Hande, M. P., Samper, E., Lansdorp, P. & Blasco, M. A. Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J. Cell Biol.144, 589–601 (1999). CASPubMedPubMed Central Google Scholar
Niida, H. et al. Severe growth defect in mouse cells lacking the telomerase RNA component. Nature Genet.19, 203–206 (1998). CASPubMed Google Scholar
Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J.11, 1921–1929 (1992). CASPubMedPubMed Central Google Scholar
Hackett, J. A., Feldser, D. M. & Greider, C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell106, 275–286 (2001). CASPubMed Google Scholar
Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell97, 527–538 (1999). CASPubMed Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). CASPubMed Google Scholar
Serrano, M. et al. Role of the INK4A locus in tumor suppression and cell mortality. Cell85, 27–37 (1996). CASPubMed Google Scholar
Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4A(δ2/3) cancer-prone mouse. Cell97, 515–525 (1999). CASPubMed Google Scholar
Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet.26, 114–117 (2000). CASPubMed Google Scholar
Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet.28, 155–159 (2001).References39–41show that replicative senescence can protect against tumorigenesis when the frequency of tumour initiation is increased. CASPubMed Google Scholar
Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256, 668–670 (1992). CASPubMed Google Scholar
Hart, R. W. & Setlow, R. B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl Acad. Sci. USA71, 2169–2173 (1974). CASPubMedPubMed Central Google Scholar
Kolquist, K. A. et al. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nature Genet.19, 182–186 (1998). CASPubMed Google Scholar
Harle-Bachor, C. & Boukamp, P. Telomerase activity in the regenerative basal layer of the epidermis in human skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl Acad. Sci. USA93, 6476–6481 (1996). CASPubMedPubMed Central Google Scholar
Gonzalez-Suarez, E. et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J.20, 2619–2630 (2001).Indicates that high levels of telomerase might have an additional proliferative effect. CASPubMedPubMed Central Google Scholar
Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl Acad. Sci. USA98, 10308–10313 (2001). CASPubMedPubMed Central Google Scholar
Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA92, 4818–4822 (1995). CASPubMedPubMed Central Google Scholar
Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene16, 1723–1730 (1998). CASPubMed Google Scholar
Blasco, M. A., Rizen, M., Greider, C. W. & Hanahan, D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nature Genet.12, 200–204 (1996). CASPubMed Google Scholar
Chadeneau, C., Siegel, P., Harley, C. B., Muller, W. J. & Bacchetti, S. Telomerase activity in normal and malignant murine tissues. Oncogene11, 893–898 (1995). CASPubMed Google Scholar
Vaziri, H. et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA91, 9857–9860 (1994). CASPubMedPubMed Central Google Scholar
Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet.52, 661–667 (1993). CASPubMedPubMed Central Google Scholar
Zhang, A. et al. Frequent amplification of the telomerase reverse transcriptase gene in human tumors. Cancer Res.60, 6230–6235 (2000). CASPubMed Google Scholar
Greenberg, R. A. et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene18, 1219–1226 (1999). CASPubMed Google Scholar
Wu, K. J. et al. Direct activation of TERT transcription by c-MYC. Nature Genet.21, 220–224 (1999). CASPubMed Google Scholar
Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev.12, 1769–1774 (1998). CASPubMedPubMed Central Google Scholar
Oh, S. T., Kyo, S. & Laimins, L. A. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol.75, 5559–5566 (2001). CASPubMedPubMed Central Google Scholar
Klingelhutz, A. J., Foster, S. A. & McDougall, J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature380, 79–82 (1996). CASPubMed Google Scholar
Weinberg, R. A. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res.49, 3713–3721 (1989). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Lloyd, A. C. Ras versus cyclin-dependent kinase inhibitors. Curr. Opin. Genet. Dev.8, 43–48 (1998). CASPubMed Google Scholar
Adams, J. M. & Cory, S. Transgenic models of tumor development. Science254, 1161–1167 (1991). CASPubMed Google Scholar
Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature410, 1111–1116 (2001). CASPubMed Google Scholar
Lloyd, A. C. et al. Cooperating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev.11, 663–677 (1997). CASPubMed Google Scholar
Roper, E., Weinberg, W., Watt, F. M. & Land, H. p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep.2, 145–150 (2001). CASPubMedPubMed Central Google Scholar
Lin, A. W. & Lowe, S. W. Oncogenic ras activates the ARF–p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA98, 5025–5030 (2001). CASPubMedPubMed Central Google Scholar
Lemoine, N. R. et al. Partial transformation of human thyroid epithelial cells by mutant H-ras oncogene. Oncogene5, 1833–1837 (1990). CASPubMed Google Scholar
Foster, S. A., Wong, D. J., Barrett, M. T. & Galloway, D. A. Inactivation of p16 in human mammary epithelial cells by CpG island methylation. Mol. Cell Biol.18, 1793–1801 (1998). CASPubMedPubMed Central Google Scholar
Romanov, S. R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature409, 633–637 (2001). CASPubMed Google Scholar
Hui, R. et al. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin. Cancer Res.6, 2777–2787 (2000). CASPubMed Google Scholar
Johnson, F. B., Sinclair, D. A. & Guarente, L. Molecular biology of aging. Cell96, 291–302 (1999). CASPubMed Google Scholar
West, M. D., Pereira-Smith, O. M. & Smith, J. R. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp. Cell Res.184, 138–147 (1989). CASPubMed Google Scholar
Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl Acad. Sci. USA90, 7915–7922 (1993). CASPubMedPubMed Central Google Scholar
Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res.59, 5002–5011 (1999). CASPubMed Google Scholar
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA98, 12072–12077 (2001). CASPubMedPubMed Central Google Scholar
Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science286, 2507–2510 (1999). CASPubMed Google Scholar
Bullock, A. N. & Fersht, A. R. Rescuing the function of mutant p53. Nature Rev. Cancer1, 68–76 (2001). CAS Google Scholar
Collins, K. Mammalian telomeres and telomerase. Curr. Opin. Cell Biol.12, 378–383 (2000). CASPubMed Google Scholar
Blackburn, E. H. Telomere states and cell fates. Nature408, 53–56 (2000). CASPubMed Google Scholar
Hemann, M. T., Strong, M. A., Hao, L. Y. & Greider, C. W. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell107, 67–77 (2001). CASPubMed Google Scholar
Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science283, 1321–1325 (1999). CASPubMed Google Scholar
van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998). CASPubMed Google Scholar
Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J.18, 2950–2960 (1999). CASPubMedPubMed Central Google Scholar
Liu, Y. et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol.10, 1459–1462 (2000). CASPubMed Google Scholar
Nikaido, R. et al. Presence of telomeric G-strand tails in the telomerase catalytic subunit Tert knockout mice. Genes Cells4, 563–572 (1999). PubMed Google Scholar
Herrera, E., Martinez, A. C. & Blasco, M. A. Impaired germinal center reaction in mice with short telomeres. EMBO J.19, 472–481 (2000). CASPubMedPubMed Central Google Scholar
Chang, S., Khoo, C. & DePinho, R. A. Modeling chromosomal instability and epithelial carcinogenesis in the telomerase-deficient mouse. Semin. Cancer Biol.11, 227–239 (2001). CASPubMed Google Scholar
Blasco, M. A., Funk, W., Villeponteau, B. & Greider, C. W. Functional characterization and developmental regulation of mouse telomerase RNA. Science269, 1267–1270 (1995). CASPubMed Google Scholar
Martin-Rivera, L., Herrera, E., Albar, J. P. & Blasco, M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc. Natl Acad. Sci. USA95, 10471–10476 (1998). CASPubMedPubMed Central Google Scholar
Brien, T. P. et al. Telomerase activity in benign endometrium and endometrial carcinoma. Cancer Res.57, 2760–2764 (1997). CASPubMed Google Scholar
Bodnar, A. G., Kim, N. W., Effros, R. B. & Chiu, C. P. P. Mechanism of telomerase induction during T cell activation. Exp. Cell Res.228, 58–64 (1996). CASPubMed Google Scholar
Holt, S. E., Wright, W. E. & Shay, J. W. Regulation of telomerase activity in immortal cell lines. Mol. Cell Biol.16, 2932–2939 (1996). CASPubMedPubMed Central Google Scholar
Sharma, H. W. et al. Differentiation of immortal cells inhibits telomerase activity. Proc. Natl Acad. Sci. USA92, 12343–12346 (1995). CASPubMedPubMed Central Google Scholar
Schneider, E. L. & Mitsui, Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl Acad. Sci. USA73, 3584–3588 (1976). CASPubMedPubMed Central Google Scholar
Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992). CASPubMedPubMed Central Google Scholar
Cristofalo, V. J., Allen, R. G., Pignolo, R. J., Martin, B. G. & Beck, J. C. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl Acad. Sci. USA95, 10614–10619 (1998). CASPubMedPubMed Central Google Scholar
Kipling, D. & Faragher, R. G. Telomeres: ageing hard or hardly ageing? Nature398, 191, 193 (1999). CASPubMed Google Scholar
Klapper, W., Parwaresch, R. & Krupp, G. Telomere biology in human aging and aging syndromes. Mech. Ageing Dev.122, 695–712 (2001). CASPubMed Google Scholar
Marciniak, R. A. & Johnson, F. B. & Guarente, L. Dyskeratosis congenita, telomeres and human ageing. Trends Genet.16, 193–195 (2000). CASPubMed Google Scholar
Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature402, 551–555 (1999). CASPubMed Google Scholar
Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature413, 432–435 (2001). CASPubMed Google Scholar
Ito, H. et al. Detection of human telomerase reverse transcriptase messenger RNA in voided urine samples as a useful diagnostic tool for bladder cancer. Clin. Cancer Res.4, 2807–2810 (1998). CASPubMed Google Scholar
Takakura, M., Kyo, S., Kanaya, T., Tanaka, M. & Inoue, M. Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res.58, 1558–1561 (1998). CASPubMed Google Scholar
Shammas, M. A., Simmons, C. G., Corey, D. R. & Shmookler Reis, R. J. Telomerase inhibition by peptide nucleic acids reverses 'immortality' of transformed human cells. Oncogene18, 6191–6200 (1999). CASPubMed Google Scholar
Hayakawa, N. et al. Isothiazolone derivatives selectively inhibit telomerase from human and rat cancer cells in vitro. Biochemistry38, 11501–11507 (1999). CASPubMed Google Scholar
Hamilton, S. E., Simmons, C. G., Kathiriya, I. S. & Corey, D. R. Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol.6, 343–351 (1999). CASPubMed Google Scholar
Minev, B. et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl Acad. Sci. USA97, 4796–4801 (2000). CASPubMedPubMed Central Google Scholar