Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12 (original) (raw)

References

  1. Snyder, S. H. & Sabatini, D. M. Immunophilins and the nervous system. Nature Med. 1, 32–37 (1995).
    Article CAS Google Scholar
  2. Wang, T.et al. The immunophilin FKBP12 functions as a common inhibitor of the TGFβ family type I receptors. Cell 86, 435–444 (1996).
    Article CAS Google Scholar
  3. Chen, Y.-G., Liu, F. & Massagué, J. Mechanisms of TGFβ receptor inhibition by FKBP12. EMBO 13, 3866–3876 (1997).
    Article Google Scholar
  4. Charng, M.-J., Kinnunen, P., Hawker, J., Brand, T. & Schneider, M. D. FKBP12 recognition is dispensable for signal generation by type I transforming growth factor-β receptors. J. Biol. Chem. 271, 22941–22944 (1996).
    Article CAS Google Scholar
  5. Okadome, T.et al. Characterization of the interaction of FKBP12 with the transforming growth factor-β type 1 receptor in vivo. J. Biol. Chem. 271, 21687–21690 (1996).
    Article CAS Google Scholar
  6. Zimmerman, C. M. & Mathews, L. S. Activin receptors: cellular signalling by receptor serine kinases. Biochem. Soc. Symp. 62, 25–38 (1996).
    CAS PubMed Google Scholar
  7. Jayaraman, T.et al. FK506-binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem. 267, 9474–9477 (1992).
    CAS PubMed Google Scholar
  8. Brillantes, A. B.et al. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77, 513–523 (1994).
    Article CAS Google Scholar
  9. Timerman, A. P.et al. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J. Biol. Chem. 271, 20385–20391 (1996).
    Article CAS Google Scholar
  10. Lam, E.et al. Anovel FK506 binding protein can mediate the immunosuppressive effects of FK506 and is associated with the cardiac ryanodine receptor. J. Biol. Chem. 270, 26511–26522 (1995).
    Article CAS Google Scholar
  11. Chin, T. K., Perlof, J. K., Williams, R. G., Jue, K. & Mohrmann, T. Isolated noncompaction of left ventricular myocardium, a study of eight cases. Circulation 82, 507–513 (1990).
    Article CAS Google Scholar
  12. Ritter, M.et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc. 72, 26–31 (1997).
    Article CAS Google Scholar
  13. Van Duyne, G. D., Standaert, R. F., Karplus, P. A. & Schrieber, S. L. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252, 839–842 (1991).
    Article ADS CAS Google Scholar
  14. Rossant, J. Mouse mutants and cardiac development, new molecular insights into cardiogenesis. Circ. Res. 78, 349–353 (1996).
    Article CAS Google Scholar
  15. Olson, E. N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671–676 (1996).
    Article ADS CAS Google Scholar
  16. Chen, Z.-F. & Behringer, R. R. Twist is required in head mesenchyme for cranical neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).
    Article CAS Google Scholar
  17. Zhao, Q., Behringer, R. R. & Crombrugghe, B. Prenatal folic acid treatment suppresses acrania and meroanencephaly in mice mutant for the Cart1 homeobox gene. Nature Genet. 13, 275–283 (1996).
    Article CAS Google Scholar
  18. Lau, A. L., Shou, W., Guo, Q. & Matzuk, M. M. in Inhibin, Activin and Follistatin (eds Aono, T., Sugino, H. & Vale, W. W.) 220–243 (Springer, New York, 1997).
    Book Google Scholar
  19. Tanaka, N.et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94, 1109–1117 (1996).
    Article CAS Google Scholar
  20. Arber, A.et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).
    Article CAS Google Scholar
  21. Lamb, G. D. & Stephenson, D. G. Effects of FK506 and rapamycin on excitation-contraction coupling in skeletal muscle fibers in the rat. J. Physiol. 494, 569–576 (1996).
    Article CAS Google Scholar
  22. Takeshima, H.et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559 (1994).
    Article ADS CAS Google Scholar
  23. Atkison, P.et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet 345, 894–896 (1995).
    Article CAS Google Scholar
  24. Okata, K.et al. The role of an immunophilin, FKBP12, in chick embryonic cardiac development. Circulation 94(suppl. 1) 1–120 (1996).
    Article Google Scholar
  25. Näbauar, M., Callewaert, G., Cleemann, L. & Morad, M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 244, 800–803 (1989).
    Article ADS Google Scholar
  26. Rowe, L. B.et al. Maps from two interspecific backcross DNA panels available as a community genetic mapping resource. Mammal. Genome 5, 253–274 (1994).
    Article CAS Google Scholar
  27. Dilella, A. G., Hawkins, A., Craig, R. J., Schreiber, S. L. & Griffin, C. A. Chromosomal band assignments of the genes encoding human FKBP12 and FKBP12.6. Biochem. Biophys. Res. Commun. 189, 819–823 (1992).
    Article CAS Google Scholar
  28. Bradley, A. Teratocarcinomas and Embryonic Stem Cells: a Practical Approach (ed. Robinson, E. J.) 113–151 (IRL, Oxford, 1987).
    Google Scholar
  29. Albrecht, U., Eichele, G., Helms, J. A. & Lu, H.-C. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G. P.) 23–48 (CRC, Boca Raton, 1997).
    Google Scholar
  30. Aghdasi, B., Zhang, J.-Z., Wu, Y., Reid, M. & Hamilton, S. L. Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel. J. Biol. Chem. 272, 3739–3748 (1997).
    Article CAS Google Scholar

Download references