Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors (original) (raw)

Nature volume 351, pages 568–570 (1991)Cite this article

Abstract

AFFERENT activity has an important role in the formation of connections in the developing mammalian visual system1,2. But the extent to which the activity of target neurons shapes patterns of afferent termination and synaptic contact is not known. In the ferret's visual pathway, retinal ganglion cell axons from each eye segregate early in development into eye-specific laminae in the lateral geniculate nucleus (LGN)3. The dorsal laminae (termed laminae A and Al) then segregate further into inner and outer sublaminae that retain input from on-centre and off-centre retinal axons, respectively4,5. Thus, individual retinogeniculate axons form terminal arbors within laminae A and Al that are restricted to one inner or outer sublamina6. We report here that blockade of _N_-methyl-D-aspartate (NMDA) receptors on LGN cells with specific antagonists during the period of sublamina formation prevents retinal afferents from segregating into 'On' and 'Off sublaminae. Retinogeniculate axons have arbors that are not restricted appropriately, or are restricted in size but inappropri-ately positioned within the eye-specific laminae. NMDA receptor antagonists may specifically disrupt a mechanism by which LGN neurons detect correlated afferent and target activity7, and have been shown to reduce retinogeniculate transmission more generally8–10, causing LGN cells to have markedly reduced levels of activity. These results therefore indicate that the activity of postsynaptic cells can significantly influence the patterning of inputs and the structure of presynaptic afferents during development.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Movshon, J. A. & Van Sluyters, R. C. A. Rev. Psychol. 32, 477–522 (1981).
    Article CAS Google Scholar
  2. Sherman, S. M. & Spear, P. D. Physiol. Rev. 62, 740–855 (1982).
    Article Google Scholar
  3. Linden, D. C. Guillery, R. W. & Cucchiaro, J. J. comp. Neurol. 203, 189–211 (1981).
    Article CAS Google Scholar
  4. Stryker, M. P. & Zahs, K. R. J. Neurosci. 3, 1943–1951 (1983).
    Article CAS Google Scholar
  5. Hahm, J. & Sur, M. Neurosci. Abstr 14, 460 (1988).
    Google Scholar
  6. Roe, A. W., Garraghty, P. E. & Sur, M. J. comp. Neurol. 288, 208–242 (1989).
    Article CAS Google Scholar
  7. Constantine-Paton, M., Cline, H. T. & Debski, E. A. Rev. Neurosci. 13, 129–134 (1990).
    Article CAS Google Scholar
  8. Sillito, A. M., Murphy, P. C., Salt, T. E. & Moody, C. I. J. Neurophysiol. 63, 347–355 (1990).
    Article CAS Google Scholar
  9. Heggelund, P. & Hartveit, E. J. Neurophysiol. 63, 1347–1360 (1990).
    Article CAS Google Scholar
  10. Kwon, Y. H., Esguerra, M. & Sur, M. J. Neurophysiol. (in the press).
  11. Cline, H. T., Debski, E. & Constantine-Paton, M. Proc. natn. Acad. Sci. U.S.A. 84, 4342–4345 (1987).
    Article ADS CAS Google Scholar
  12. Cline, H. T. & Constantine-Paton, M. Neuron 3, 413–426 (1989).
    Article CAS Google Scholar
  13. Cline, H. T. & Constantine-Paton, M. J_. Neurosci._ 10, 1197–1216 (1990).
    Article CAS Google Scholar
  14. Scherer, W. J. & Udin, S. B. J. Neurosci. 9: 3837–3843 (1989).
    Article CAS Google Scholar
  15. Bear, M. F., Kleinschmidt, A., Gu, Q. & Singer, W. J. Neurosci. 10, 909–925 (1990).
    Article CAS Google Scholar
  16. Reiter, H. O. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 85, 3623–3627 (1988).
    Article ADS CAS Google Scholar
  17. Miller, K. D., Chapman, B. & Stryker, M. P. Proc. natn. Acad. Sci. U.S.A. 86, 5183–5187 (1989).
    Article ADS CAS Google Scholar
  18. Fox, K., Sato, H. & Daw, N. J. Neurosci. 9, 2443–2454 (1989).
    Article CAS Google Scholar
  19. Langdon, R. B. & Sur, M. J. Neurophysiol. 64, 1484–1501 (1990).
    Article CAS Google Scholar
  20. Shatz, C. J. & Stryker, M. P. Science 242, 87–89 (1988).
    Article ADS CAS Google Scholar
  21. Sretavan, D. W., Shatz, C. J. & Stryker, M. P. Nature 336, 468–471 (1988).
    Article ADS CAS Google Scholar
  22. Esguerra, M. & Sur, M. Neurosci. Abstr. 16, 159 (1990).
    Google Scholar
  23. Esguerra, M., Kwon, Y. H. & Sur, M. Neurosci. Abstr. 15, 175 (1989).
    Google Scholar
  24. Zahs, K. R. & Stryker, M. P. J. comp. Neurol. 241, 210 (1985).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. Mriganka Sur: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
    Jong-On Hahm, Ronald B. Langdon & Mriganka Sur

Authors

  1. Jong-On Hahm
    You can also search for this author inPubMed Google Scholar
  2. Ronald B. Langdon
    You can also search for this author inPubMed Google Scholar
  3. Mriganka Sur
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Hahm, JO., Langdon, R. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors.Nature 351, 568–570 (1991). https://doi.org/10.1038/351568a0

Download citation