Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs (original) (raw)

Nature volume 352, pages 247–248 (1991)Cite this article

Abstract

IN vertebrates, mature eggs are arrested at the second meiotic metaphase by the cytostatic factor (CSF)1, now known to be the_c-_ mos proto-oncogene product (Mos)2, 3. Fertilization or egg activaá-tion triggers a transient increase in the cytoplasmic free calcium4, 5 and releases the meiotic arrest by inactivating maturation/mitosis-promoting factor (MPF)6, 7. CSF or Mos, which is also inactivated by the calcium transient8, 9, seems to stabilize MPF in mature eggs and CSF-injected embryos2, 6, 10. Thus, it was assumed that CSF inactivation is the primary cause of MPF inactivation on meiotic release2, 6, 8, 10–14. We have directly compared the degradation kinetics of CSF (Mos) and MPF during meiotic release, using the same batch of Xenopus eggs. We report here that, at the molecular level, cyclin subunits of MPF are degraded before Mos is degraded and, at the physiological level, that MPF activity is inactivated before CSF activity during activation of Xenopus eggs. These results, in conjunction with circumstantial evidence, support the novel view that a calcium transient on fertilization induces a CSF-independent pathway for MPF inactivation, whereas CSF inactivation during meiotic release serves only to allow the fertilá-ized egg to enter mitosis.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Masui, Y. & Markert, C. L. J. exp. Zool. 177, 129–146 (1971).
    Article CAS Google Scholar
  2. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. Nature 342, 512–518 (1989).
    Article ADS CAS Google Scholar
  3. Okazaki, K. et al. Jap. J. Cancer Res. 82, 250–253 (1991).
    Article CAS Google Scholar
  4. Busa, W. B. & Nuccitelli, R. J. Cell Biol. 100, 1325–1329 (1989).
    Article Google Scholar
  5. Kubota, H. Y., Yoshimoto, Y., Yoneda, M. & Hiramoto, Y. Devl Biol. 119, 129–136 (1987).
    Article CAS Google Scholar
  6. Newport, J. W. & Kirschner, M. W. Cell 37, 731–742 (1984).
    Article CAS Google Scholar
  7. Murray, A. W. & Kirschner, M. W. Nature 339, 275–280 (1989).
    Article ADS CAS Google Scholar
  8. Meyerhof, P. G. & Masui, Y. Devl Biol. 61, 214–229 (1977).
    Article CAS Google Scholar
  9. Watanabe, N., Vande Woude, G. F., Ikawa, Y. & Sagata, N. Nature 342, 505–511 (1989).
    Article ADS CAS Google Scholar
  10. Gerhart, J., Wu, M. & Kirschner, M. J. Cell Biol. 98, 1247–1255 (1984).
    Article CAS Google Scholar
  11. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).
    Article ADS CAS Google Scholar
  12. Hunt, T. Nature 342, 483–484 (1989).
    Article ADS CAS Google Scholar
  13. Roy, L. M. et al. Cell 61, 825–831 (1990).
    Article CAS Google Scholar
  14. Lorca, T. et al. Molec. cell. Biol. 11, 1171–1175 (1991).
    Article CAS Google Scholar
  15. Gautier, J. et al. Cell 60, 487–494 (1990).
    Article CAS Google Scholar
  16. Minshull, J., Golsteyn, R., Hill, C. S. & Hunt, T. EMBO J. 9, 2865–2875 (1990).
    Article CAS Google Scholar
  17. Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. & Vande Woude, G. F. Nature 335, 519–525 (1988).
    Article ADS CAS Google Scholar
  18. Freeman, R. S., Kanki, J. P., Ballantyne, S. M., Pickham, K. M. & Donoghue, D. J. J. Cell Biol. 111, 533–541 (1990).
    Article CAS Google Scholar
  19. Yew, N., Oskarsson, M., Daar, I., Blair, D. G. & Vande Woude, G. F. Molec. cell. Biol. 11, 604–610 (1991).
    Article CAS Google Scholar
  20. Shibuya, E. K. & Masui, Y. Devl Biol. 129, 253–264 (1988).
    Article CAS Google Scholar
  21. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. J. Cell Biol. 98, 1730–1745 (1984).
    Article CAS Google Scholar
  22. Glotzer, M., Murray, A. W. & Kirschner, M. W. Nature 349, 132–138 (1991).
    Article ADS CAS Google Scholar
  23. Studier, F. W. & Moffatt, B. A. J. molec. Biol. 189, 113–130 (1986).
    Article CAS Google Scholar
  24. Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D. & Vande Woude, G. F. Science 245, 643–646 (1989).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Tsukuba Life Science Centre, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305, Japan
    Nobumoto Watanabe & Yoji Ikawa
  2. ICRF Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK
    Tim Hunt
  3. Tokyo Medical and Dental University, Yushima, Bunkyo, Tokyo, 113, Japan
    Yoji Ikawa
  4. Division of Molecular Genetics, Institute of Life Science, Kurume University, 2432-3 Aikawa, Kurume, Fukuoka, 830, Japan
    Noriyuki Sagata

Authors

  1. Nobumoto Watanabe
    You can also search for this author inPubMed Google Scholar
  2. Tim Hunt
    You can also search for this author inPubMed Google Scholar
  3. Yoji Ikawa
    You can also search for this author inPubMed Google Scholar
  4. Noriyuki Sagata
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Watanabe, N., Hunt, T., Ikawa, Y. et al. Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs.Nature 352, 247–248 (1991). https://doi.org/10.1038/352247a0

Download citation

This article is cited by