Cooperative interaction of an initiator-binding transcription initiation factor and the helix–loop–helix activator USF (original) (raw)

Nature volume 354, pages 245–248 (1991)Cite this article

Abstract

TRANSCRIPTION initiation by mammalian RNA polymerase II is effected by multiple common factors1,2interacting through minimal promoter elements and regulated by gene-specific factors3 interacting with distal control elements. Minimal promoter elements that can function independently or together, depending on the specific promoter, include the upstream TATA box4,5 and a pyrimidine-rich initiator6–8 (Inr) overlapping the transcription start site. The binding of TFIID to the TATA element4,9 promotes the assembly of other factors into a preinitiation complex10–12 but factors which function at the Inr have not been defined. We show here that a novel factor (TFII-I) binds specifically to Inr elements, supports basal transcription from the adenovirus major late promoter and is immunologically related to the helix-loop-helix activator USF (ref. 13). We further show that TFII-I also binds to the upstream high-affinity USF site (E box), that USF also binds to the Inr, and that TFII-I and USF interact cooperatively at both Inr and E box sites. Thus, TFII-I represents a novel type of transcription initiation factor whose interactions at multiple promoter elements may aid novel communication mechanisms between upstream regulatory factors and the general transcriptional machinery.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. J. biol. Chem. 255, 11992–11996 (1980).
    CAS PubMed Google Scholar
  2. Sumimoto, H., Ohkuma, Y., Yamamoto, T., Horikoshi, M. & Roeder, R. G. Proc. natn. Acad. Sci. U.S.A. 87, 9158–9162 (1990).
    Article ADS CAS Google Scholar
  3. Maniatis, T., Goodbourn, S. & Fischer, J. A. Science 236, 1237–1245 (1987).
    Article ADS CAS Google Scholar
  4. Nakajima, N., Horikoshi, M. & Roeder, R. G. Molec. cell. Biol. 8, 4028–4040 (1988).
    Article CAS Google Scholar
  5. Breathnach, R. & Chambon, P. A. Rev. Biochem. 50, 349–383 (1981).
    Article CAS Google Scholar
  6. Grosschedl, R. & Birnstiel, M. Proc. natn. Acad. Sci. U.S.A. 77, 1432–1436 (1980).
    Article ADS CAS Google Scholar
  7. Smale, S. T. & Baltimore, D. Cell 57, 103–113 (1989).
    Article CAS Google Scholar
  8. Smale, S. T., Schmidt, M. C., Berk, A. J. & Baltimore, D. Proc. natn. Acad Sci. U.S.A 87, 4509–4513 (1990).
    Article ADS CAS Google Scholar
  9. Sawadogo, M. & Roeder, R. G. Cell 43, 165–175 (1985).
    Article CAS Google Scholar
  10. Van Dyke, M., Roeder, R. G. & Sawadogo, M. Science 241, 1335–1338 (1988).
    Article ADS CAS Google Scholar
  11. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P. A. Cell 56, 549–561 (1989).
    Article CAS Google Scholar
  12. Maldonado, E., Ha, I., Cortes, P., Weis, L. & Reinberg, D. Molec. cell. Biol. 10, 6335–6347 (1990).
    Article CAS Google Scholar
  13. Gregor, P. D., Sawadogo, M. & Roeder, R. G. Genes Dev. 4, 1730–1740 (1990).
    Article CAS Google Scholar
  14. Carthew, R. W., Chodosh, L. A. & Sharp, P. A. Cell 43, 439–448 (1985).
    Article CAS Google Scholar
  15. Miyamoto, N. G., Moncollin, V., Egly, J. M. & Chambon, P. EMBO J. 4, 3563–3570 (1985).
    Article CAS Google Scholar
  16. Meisterernst, M., Roy, A. L., Lieu, H. L. & Roeder, R. G. Cell 66, 1–20 (1991).
    Article Google Scholar
  17. Blackwood, E. M. & Eisenman, R. N. Science 251, 1149–1280 (1991).
    Article Google Scholar
  18. Prendergast, G. C., Lawe, D. & Ziff, E. B. Cell 65, 395–407 (1991).
    Article CAS Google Scholar
  19. Murre, C., Schonleber-McCaw, P. & Baltimore, D. Cell 56, 777–783 (1989).
    Article CAS Google Scholar
  20. Murre, C. et al. Cell 58, 537–544 (1989).
    Article CAS Google Scholar
  21. Davis, R. L., Cheng, P. F., Lassar, A. B. & Weintraub, H. Cell 60, 733–746 (1990).
    Article CAS Google Scholar
  22. Nakatani, Y. et al. Nature 348, 86–88 (1990).
    Article ADS CAS Google Scholar
  23. Pognonec, P. & Roeder, R. G. Molec. cell. Biol. 11, 5125–5136 (1991).
    Article CAS Google Scholar
  24. Hoffman, A. et al. Nature 346, 387–390 (1990).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, 10021, USA
    Ananda L. Roy, Michael Meisterernst, Philippe Pognonec & Robert G. Roeder

Authors

  1. Ananda L. Roy
    You can also search for this author inPubMed Google Scholar
  2. Michael Meisterernst
    You can also search for this author inPubMed Google Scholar
  3. Philippe Pognonec
    You can also search for this author inPubMed Google Scholar
  4. Robert G. Roeder
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Roy, A., Meisterernst, M., Pognonec, P. et al. Cooperative interaction of an initiator-binding transcription initiation factor and the helix–loop–helix activator USF.Nature 354, 245–248 (1991). https://doi.org/10.1038/354245a0

Download citation

This article is cited by