Retinoblastoma protein switches the E2F site from positive to negative element (original) (raw)

Nature volume 358, pages 259–261 (1992)Cite this article

Abstract

ORIGINALLY E2F sites were identified as elements in the promoters of adenovirus early genes that are necessary for activation of these genes by the early protein E1a (ref. 1). E2F promoter elements have been shown to be important for transcriptional activation of several genes critical for progression through the cell cycle2–4. During the G1 phase of the cell cycle, the E2F protein forms a complex with the cell-cycle protein Rb (ref. 5) and it has been suggested that this binding of Rb to E2F inactivates E2F (ref. 5). Here we show that Rb-E2F is an active complex that, when bound to the E2F site, inhibits the activity of other promoter elements and thus silences transcription. We propose that the ability of this complex to inhibit transcription is integral to the function of Rb and provide evidence that E2F is a positive element in the absence of an active form of Rb. It has been shown that binding of Rb to E2F depends on the phosphorylation state of Rb (only the underphosphorylated form binds)5 and that the phosphorylation state of Rb changes during progression through the cell cycle6,7. We therefore suggest that the E2F site alternates between a positive and negative element with the phosphorylation/dephosphorylation cycle of Rb. This cyclic activity may be responsible for activating and then inhibiting genes during the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Kovesdi, I., Reichel, R. & Nevins, J. R. Proc. natn. Acad. Sci. U.S.A. 84, 2180–2184 (1987).
    Article ADS CAS Google Scholar
  2. Blake, M. C. & Azizkhan, J. C. Molec. cell. Biol. 9, 4994–5002 (1989).
    CAS PubMed PubMed Central Google Scholar
  3. Thalmeier, K., Synovzik, H., Mertz, R., Winnacker, E. L. & Lipp, M. Genes Dev. 3, 527–536 (1989).
    Article CAS Google Scholar
  4. Mudryj, M., Hiebert, S. W. & Nevins, J. R. EMBO J. 9, 2179–2184 (1990).
    Article CAS Google Scholar
  5. Chellappan, S. P., Hiebert, S., Mudryi, M., Horowitz, J. M. & Nevins, J. R. Cell 65, 1053–1061 (1991).
    Article CAS Google Scholar
  6. Buchkovich, K., Duffy, L. A. & Harlow, E. Cell 58, 1097–1105 (1989).
    Article CAS Google Scholar
  7. Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M. & DeCaprio, J. A. Cell 60, 387–396 (1990).
    Article CAS Google Scholar
  8. Hearing, P. & Shenk, T. Cell 33, 695–703 (1983).
    Article CAS Google Scholar
  9. Hiebert, S. W., Blake, M., Azizkhan, J. & Nevins, J. R. J. Virol. 65, 3547–3552 (1991).
    Article CAS Google Scholar
  10. Bagchi, S., Raychaudhuri, P. & Nevins, J. R. Cell 62, 659–669 (1990).
    Article CAS Google Scholar
  11. Chittenden, T., Livingston, D. M. & Kaelin, W. G. Cell 65, 1073–1082 (1991).
    Article CAS Google Scholar
  12. Robbins, P. D., Horowitz, J. M. & Mulligan, R. C. Nature 346, 668–671 (1990).
    Article ADS CAS Google Scholar
  13. Weintraub, S. J. & Dean, D. C. Molec. cell. Biol. 12, 512–517 (1992).
    CAS PubMed PubMed Central Google Scholar
  14. Yee, A. S., Reichel, R., Kovesdi, I. & Nevins, J. R. EMBO J. 6, 2061–2068 (1987).
    Article CAS Google Scholar
  15. Rosen, G. D., Birkenmeier, T. M. & Dean, D. C. Proc. natn. Acad. Sci. U.S.A. 88, 4094–4098 (1991).
    Article ADS CAS Google Scholar
  16. Shew, J. Y. et al. Proc. natn. Acad. Sci. U.S.A. 87, 6–10 (1990).
    Article ADS CAS Google Scholar
  17. Takahashi, R. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5257–5261 (1991).
    Article ADS CAS Google Scholar
  18. Scheffner, M., Munger, K., Byrne, J. C. & Howley, P. M. Proc. natn. Acad. Sci. U.S.A. 88, 5523–5527 (1991).
    Article ADS CAS Google Scholar
  19. Bernards, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 6474–6478 (1989).
    Article ADS CAS Google Scholar
  20. Whyte, P. et al. Nature 334, 124–129 (1988).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Departments of Medicine and Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid, St Louis, Missouri, 63110, USA
    Steven J. Weintraub, Cheryl A. Prater & Douglas C. Dean

Authors

  1. Steven J. Weintraub
    You can also search for this author inPubMed Google Scholar
  2. Cheryl A. Prater
    You can also search for this author inPubMed Google Scholar
  3. Douglas C. Dean
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Weintraub, S., Prater, C. & Dean, D. Retinoblastoma protein switches the E2F site from positive to negative element.Nature 358, 259–261 (1992). https://doi.org/10.1038/358259a0

Download citation