Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ (original) (raw)
References
McNicholas, C. M., Wang, W., Ho, K., Hebert, S. C. & Giebisch, G. Regulation of ROMK1 K+ channel activity involves phosphorylation processes. Proc. Natl Acad. Sci. USA91, 8077–8081 (1994). ArticleADSCAS Google Scholar
Fakler, B., Brandle, U., Glowatzki, E., Zenner, H.-P. & Ruppersberg, J. P. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron13, 1413–1420 (1994). ArticleCAS Google Scholar
Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature364, 802–806 (1993). ArticleADSCAS Google Scholar
Dascal, N. et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl Acad. Sci. USA90, 10235–10239 (1993). ArticleADSCAS Google Scholar
Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKAChis a heteromultimer of two inwardly rectifying K+-channel proteins. Nature374, 135–141 (1995). ArticleADSCAS Google Scholar
Lesage, F. et al. Molecular properties of neuronal G protein-activated inwardly rectifying K+ channels. J. Biol. Chem.270, 28660–28667 (1995). ArticleCAS Google Scholar
Furukawa, T., Yamane, T., Terai, T., Katayama, Y. & Hiraoka, M. Functional linkage of the cardiac ATP-sensitive K+ channel to actin cytoskeleton. Pflugers Arch.431, 504–512 (1996). ArticleCAS Google Scholar
Hilgemann, D. W. & Ball, R. Regulationof cardiac Na+, Ca2+ exchange and KATPpotassium channels by PIP2. Science273, 956–959 (1996). ArticleADSCAS Google Scholar
Fukami, K. et al. Antibody to phosphatidylinositol 4,5-bisphosphate inhibits oncogene-induced mitogenesis. Proc. Natl Acad. Sci. USA85, 9057–9061 (1988). ArticleADSCAS Google Scholar
Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature362, 127–133 (1993). ArticleADSCAS Google Scholar
Ho, K. et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature362, 31–38 (1993). ArticleADSCAS Google Scholar
Sui, J. L., Chan, K. W. & Logothetis, D. E. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J. Gen. Physiol.109, 381–390 (1996). Article Google Scholar
Chan, K. W. et al. Arecombinant inwardly rectifying potassium channel coupled to GTP-binding proteins. J. Gen. Physiol.107, 381–397 (1996). ArticleCAS Google Scholar
Zhang, X., Jefferson, A. B., Auethavekiat, V. & Majerus, P. W. The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA92, 4853–4856 (1995). ArticleADSCAS Google Scholar
Fukami, K., Endo, T., Imamura, M. & Takenawa, T. α-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem.269, 1518–1522 (1994). CASPubMed Google Scholar
Fan, Z. & Makielski, J. C. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem.272, 5388–5395 (1997). ArticleCAS Google Scholar
Schacht, J. Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. J. Neurochem.27, 1119–1124 (1976). ArticleCAS Google Scholar
Kim, J., Mosior, M., Chung, L. A., Wu, H. & McLaughlin, S. Binding of peptides with basic residues to membrane containing acidic phospholipids. Biophys. J.60, 135–148 (1991). ArticleCAS Google Scholar
Harlan, J. E., Yoon, H. S., Hajduk, P. J. & Fesik, S. W. Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry34, 9859–9864 (1995). ArticleCAS Google Scholar
Reuveny, E. et al. Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature370, 143–146 (1994). ArticleADSCAS Google Scholar
Huang, C.-L., Slesinger, P. A., Casey, P. J., Jan, Y. N. & Jan, L. Y. Evidence that direct binding of Gβγto the GIRK1 protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron15, 1133–1143 (1995). ArticleCAS Google Scholar
Huang, C.-L., Jan, Y. N. & Jan, L. Y. Binding of Gβγto multiple regions of G protein-gated inward rectifier K+ channels. FEBS Lett.405, 291–298 (1997). ArticleCAS Google Scholar
Krapivinsky, G., Krapivinsky, L., Wickman, K. & Clapham, D. E. Gβγ binds directly to the G protein-gated K+ channel, IKACh. J. Biol. Chem.270, 29059–29062 (1995). ArticleCAS Google Scholar
Janmey, P. A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol.56, 169–191 (1994). ArticleCAS Google Scholar
Penniston, J. T. Plasma membrane Ca2+-pumping ATPases. Ann. NY Acad. Sci.402, 291–303 (1982). ArticleADS Google Scholar
Pitcher, J. A., Touhara, K., Payne, E. S. & Lefkowitz, R. J. Pleckstrin homology domain-mediated membrane association and activation of the β-adrenergic receptor kinase requires coordinate interaction with Gβγ and lipid. J. Biol. Chem.270, 11707–11710 (1995). ArticleCAS Google Scholar
Tagliaalatela, M., Wible, B. A., Caporaso, R. & Brown, A. M. Specification of the pore properties by the carboxyl terminus of inward rectifying K+ channels. Science264, 844–847 (1994). ArticleADS Google Scholar
Clapham, D. E. & Neer, E. J. New roles for G protein βγ-dimers in transmembrane signaling. Nature365, 403–406 (1993). ArticleADSCAS Google Scholar
Casey, P. J., Graziano, M. P. & Gilman, A. G. Gprotein βγ subunits from bovine brain and retina: equivalent catalytic support of ADP-ribosylation of α subunit by pertussis toxin but differential interactions with Gsα. Biochemistry28, 611–616 (1989). ArticleCAS Google Scholar