Association between GTPase activators for Rho and Ras families (original) (raw)

Nature volume 359, pages 153–154 (1992)Cite this article

Abstract

THE _ras_-related low-molecular-mass GTPases participate in signal transduction involving a variety of cellular functions, including cell-cycle progression, cellular differentiation, cytoskeletal organization, protein transport and secretion1,2. The cycling of these proteins between GTP-bound and GDP-bound states is partially controlled by GTPase activating proteins (GAPs) which stimulate the intrinsic GTP-hydrolysing activity of specific GTPases1–6. The ras GTPase-activating protein (Ras-GAP) forms a complex with a second protein, p190 (_M_r 190,000), in growth-factor stimulated and tyrosine-kinase transformed cells7,8. At its carboxy-terminal end, p190 contains a region that is conserved in the breakpoint cluster region, _n_-chimaerin, and Rho-GAP9. Each of these three proteins exhibits GAP activity for at least one member of the rho family of small GTPases10. We have tested recombinant p190 protein for GAP activity on GTPases of the ras, rho and rab families, and show here that p190 can function as a GAP specifically for members of the rho family. Consequently, the formation of a complex between Ras-GAP and p190 in growth-factor stimulated cells may allow the coupling of signalling pathways that involve ras and rho GTPases.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).
    Article ADS CAS Google Scholar
  2. Hall, A. Science 249, 635–640 (1990).
    Article ADS CAS Google Scholar
  3. Evans, T., Hart, M. J. & Cerione, R. A. Curr. Opin. Cell Biol. 3, 185–191 (1991).
    Article CAS Google Scholar
  4. Lowy, D. R., Zhang, K., DeClue, J. E. & Willumsen, B. M. Trends Genet. 7, 346–351 (1991).
    Article CAS Google Scholar
  5. Downward, J. Curr. Opin. Genet. Dev. 2, 13–18 (1992).
    Article CAS Google Scholar
  6. Fry, M. J. Curr. Biol. 7, 78–80 (1992).
    Article Google Scholar
  7. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Nature 343, 377–381 (1990).
    Article ADS CAS Google Scholar
  8. Moran, M., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Molec. cell. Biol. 11, 1804–1812 (1991).
    Article CAS Google Scholar
  9. Settleman, J., Narasimhan, V., Foster, L. C. & Weinberg, R. A. Cell 69, 539–549 (1992).
    Article CAS Google Scholar
  10. Diekmann, D. et al. Nature 351, 400–402 (1991).
    Article ADS CAS Google Scholar
  11. Trahey, M. & McCormick, F. Science 242, 1697–1700 (1987).
    Article ADS Google Scholar
  12. Vogel, U. S. et al. Nature 335, 90–93 (1988).
    Article ADS CAS Google Scholar
  13. Otsu, M. et al. Cell 65, 91–104 (1991).
    Article CAS Google Scholar
  14. Paterson, H. F. et al. J. Cell Biol. 111, 1001–1007 (1990).
    Article CAS Google Scholar
  15. Chardin, P. et al. EMBO J. 8, 1087–1092 (1989).
    Article CAS Google Scholar
  16. Adams, A. E. M., Johnson, D. J., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. J. Cell Biol. 111, 131–142 (1990).
    Article CAS Google Scholar
  17. Hart, M. J., Polakis, P. G., Evans, T. & Cerione, R. A. J. biol. Chem. 265, 5990–5001 (1990).
    CAS PubMed Google Scholar
  18. Gross, M. et al. Molec. cell. Biol. 5, 1015–1024 (1985).
    Article CAS Google Scholar
  19. Trahey, M. et al. Molec. cell. Biol. 7, 541–544 (1987).
    Article CAS Google Scholar
  20. Frech, M. et al. Science 249, 169–171 (1990).
    Article ADS CAS Google Scholar
  21. Lerosey, I., Chardin, P., deGunzberg, J. & Tavitian, A. J. biol. Chem. 266, 4315–4321 (1991).
    CAS PubMed Google Scholar
  22. Frech, M., Schlichting, I., Wittinghofer, A. & Chardin, P. J. biol. Chem. 265, 6353–6359 (1990).
    CAS PubMed Google Scholar
  23. Garrett, M. D., Self, A. J., van Oers, C. & Hall, A. J. biol. Chem. 264, 10–13 (1989).
    CAS Google Scholar
  24. Baker, D., Wuestehube, I., Schekman, R., Botstein, D. & Segev, N. Proc. natn. Acad. Sci. U.S.A. 87, 355–359 (1990).
    Article ADS CAS Google Scholar
  25. Zahraoui, A., Touchet, N., Chardin, P. & Tavitian, A. J. biol. Chem. 264, 12394–12401 (1989).
    CAS Google Scholar
  26. McCoy, M. S., Bargman, C. I. & Weinberg, R. A. Molec. cell. Biol. 4, 1577–1582 (1984).
    Article CAS Google Scholar
  27. Chardin, P. & Tavitian, A. Nucleic. Acids Res. 17, 4380 (1989).
    Article CAS Google Scholar
  28. Tucker, J. et al. EMBO J. 5, 1351–1358 (1986).
    Article CAS Google Scholar
  29. Smith, D. B. & Johnson, K. S. Gene 67, 31–40 (1988).
    Article CAS Google Scholar
  30. Cicchetti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Science 257, 803–806 (1992).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts, 02142, USA
    Jeffrey Settleman, Charles F. Albright, Lauren C. Foster & Robert A. Weinberg

Authors

  1. Jeffrey Settleman
    You can also search for this author inPubMed Google Scholar
  2. Charles F. Albright
    You can also search for this author inPubMed Google Scholar
  3. Lauren C. Foster
    You can also search for this author inPubMed Google Scholar
  4. Robert A. Weinberg
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Settleman, J., Albright, C., Foster, L. et al. Association between GTPase activators for Rho and Ras families.Nature 359, 153–154 (1992). https://doi.org/10.1038/359153a0

Download citation

This article is cited by