Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins (original) (raw)

Nature volume 362, pages 648–652 (1993)Cite this article

Abstract

Do the coats on vesicles budded from the Golgi apparatus actually cause the budding, or do they simply coat buds (Fig. 1)? One view (the membrane-mediated budding hypothesis1) is that budding is an intrinsic property of Golgi membranes not requiring extrinsic coat proteins. Assembly of coats from dispersed subunits is superimposed upon the intrinsic budding process and is proposed to convert the tips of tubules into vesicles. The alternative view (the coat-mediated budding hypothesis1) is that coat formation provides the essential driving force for budding. The membrane-mediated budding hypothesis was inspired by the microtubule-dependent extension of apparently uncoated, 90-nm-diameter membrane tubules from the Golgi apparatus2 and other organelles3–5 in vivo after treatment with brefeldin A, a drug that inhibits the assembly of coat proteins onto Golgi membranes6–9. This hypothesis predicts that tubules will be extended when coat proteins are unavailable to convert tubule-derived membrane into vesicles. Here we use a cell-free system in which coated vesicles are formed from Golgi cisternae to show that, on the contrary, when budding diminishes as a result of immunodepletion of coat protein pools, tubules are not formed at the expense of vesicles. We conclude that coat proteins are required for budding from Golgi membranes.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Klausner, R. D., Donaldson, J. G. & Lippincott-Schwartz, J. J. Cell Biol. 116, 1071–1080 (1992).
    Article CAS Google Scholar
  2. Lippincott-Schwartz, J. et al. Cell 60, 821–836 (1990).
    Article CAS Google Scholar
  3. Hunziker, W., Whitney, J. A. & Mellman, I. Cell 67, 617–628 (1991).
    Article CAS Google Scholar
  4. Lippincott-Schwartz, J. et al. Cell 67, 601–616 (1991).
    Article CAS Google Scholar
  5. Wood, S. A., Park, J. E. & Brown, W. J. Cell 67, 691–600 (1991).
    Article Google Scholar
  6. Donaldson, J. G. et al. J. Cell Biol 111, 2295–2306 (1990).
    Article CAS Google Scholar
  7. Duden, R. et al. Cell 64, 649–665 (1991).
    Article CAS Google Scholar
  8. Orci, L. et al. Cell 64, 1183–1195 (1991).
    Article CAS Google Scholar
  9. Robinson, M. S. & Kreis, T. E. Cell 69, 129–138 (1992).
    Article CAS Google Scholar
  10. Balch, W. E. et al. Cell 39, 405–416 (1984)
    Article CAS Google Scholar
  11. Orci, L., Glick, B. S. & Rothman, J. E. Cell 46, 171–184 (1986).
    Article CAS Google Scholar
  12. Melancon, P. et al. Cell 51, 1053–1062 (1987).
    Article CAS Google Scholar
  13. Malhotra, V. et al. Cell 58, 329–336 (1989).
    Article CAS Google Scholar
  14. Serafini, T. et al. Nature 349, 215–220 (1991).
    Article ADS CAS Google Scholar
  15. Waters, M. G., Serafini, T. & Rothman, J. E. Nature 349, 248–251 (1991).
    Article ADS CAS Google Scholar
  16. Kahn, R. A. et al. J. biol Chem. 266, 2606–2614 (1991).
    CAS PubMed Google Scholar
  17. Serafini, T. et al. Cell 67, 239–253 (1991).
    Article CAS Google Scholar
  18. Donaldson, J. G. et al. Science 254, 1197–1199 (1991).
    Article ADS CAS Google Scholar
  19. Donaldson, J. G. et al. Proc. natn. Acad. Sci. U.S.A. 89, 6408–6412 (1992).
    Article ADS CAS Google Scholar
  20. Helms, J. B. & Rothman, J. E. Nature 360, 352–354 (1992).
    Article ADS CAS Google Scholar
  21. Mellman, I. & Simons, K. Cell 68, 829–840 (1992).
    Article CAS Google Scholar
  22. Pelham, H. R. B. Cell 67, 449–451 (1991).
    Article CAS Google Scholar
  23. Pearse, B. M. F. & Bretscher, M. S. A. Rev Biochem 50, 85–101 (1981).
    Article CAS Google Scholar
  24. Moore, M. S., Mahaffey, D. T., Brodsky, F. M. & Anderson, R. G. W. Science 236, 558–563 (1987).
    Article ADS CAS Google Scholar
  25. Smythe, E., Pypaert, M., Lucocq, J. & Warren, G. J. Cell Biol. 108, 843–853 (1989).
    Article CAS Google Scholar
  26. Orci, L. et al. Cell 56, 357–368 (1989).
    Article CAS Google Scholar
  27. Cluett E. B., Wood, S. A., Banta, M. & Brown, W. J. J. Cell Biol. 120, 15–24 (1993).
    Article CAS Google Scholar
  28. Allan, V. J. & Kreis, T. E. J. Cell Biol. 103, 2229–2239 (1986).
    Article CAS Google Scholar
  29. Waters, M. G., Beckers, C. J. M. & Rothman, J. E. Meth. Enzym. 219, 331 (1992).
    Article CAS Google Scholar
  30. Palmer, D. J., Orci, L. & Rothman, J. E. J. biol. Chem. (in the press).

Download references

Author information

Authors and Affiliations

  1. Institute of Histology and Embryology, University of Geneva Medical School, 1 rue Michel Servet, 1211, Geneva, 4, Switzerland
    Lelio Orci, Mariella Ravazzola, Alain Perrelet & Mylène Amherdt
  2. Program in Cellular Biochemistry and Biophysics, Sloan‐Kettering Institute, 1275 York Avenue, New York, New York, 10021, USA
    David J. Palmer & James E. Rothman

Authors

  1. Lelio Orci
    You can also search for this author inPubMed Google Scholar
  2. David J. Palmer
    You can also search for this author inPubMed Google Scholar
  3. Mariella Ravazzola
    You can also search for this author inPubMed Google Scholar
  4. Alain Perrelet
    You can also search for this author inPubMed Google Scholar
  5. Mylène Amherdt
    You can also search for this author inPubMed Google Scholar
  6. James E. Rothman
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Orci, L., Palmer, D., Ravazzola, M. et al. Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins.Nature 362, 648–652 (1993). https://doi.org/10.1038/362648a0

Download citation