Implications of the high D/H ratio for the sources of water in Venus' atmosphere (original) (raw)

Nature volume 363, pages 428–431 (1993)Cite this article

Abstract

THE high abundance ratio of deuterium to hydrogen in the atmosphere of Venus (120 times that on Earth) can he interpreted either as the signature of a lost primordial ocean1, or of a steady state in which water is continuously supplied to the surface of Venus by comets or volcanic outgassing, balancing loss through hydrogen escape2,3. New observations4–6 of a water concentration of only 30 parts per million in Venus' atmosphere imply that the residence time of water in the atmosphere, before it escapes to space, is short compared with the age of the Solar System, casting doubt on the primordial ocean hypothesis. But a recent theoretical reanalysis of collisional ejection7 has increased estimates of the deuterium escape efficiency by a factor of 10: this means that if the venusian water budget is in steady state, the D/H ratio of the source water must be 10–15 times higher than that on Earth, ruling out cometary water, whose D/H ratio is thought to be lower than this8. Here I suggest that these observations can be understood either as the result of continuous outgassing from a highly fractionated mantle source (such as might result from severe dessication of the mantle, or massive hydrogen escape early in the planet's history) or Rayleigh fractionation after massive outgassing from catastrophic resurfacing of the planet in the past 0.5–1 Gyr.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Science 216, 630–633 (1982).
    Article ADS CAS Google Scholar
  2. Grinspoon, D. H. Science 238, 1702–1704 (1987).
    Article ADS CAS Google Scholar
  3. Grinspoon, D. H. & Lewis, J. S. Icarus 74, 21–35 (1988).
    Article ADS CAS Google Scholar
  4. Pollack, J. B. et al. Icarus (in the press).
  5. de Bergh, C. et al. Adv. Space Res. (in the press).
  6. Donahue, T. M. & Hodges, R.R. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).
  7. Gurwell, M. A. & Yung, Y. L. Planet. Space Sci. (in the press).
  8. Eberhardt, P. et al. Astr. Astrophys. 187, 435–437 (1987).
    ADS Google Scholar
  9. Rodriguez, J. M., Prather, M. J. & McElroy, M. B. Planet. Space Sci. 32, 235–1355 (1984).
    Article Google Scholar
  10. Donahue, T. M. & Hartle, R. E. Geophys. Res. Lett. 19, 2449–2452 (1992).
    Article ADS CAS Google Scholar
  11. Brace, L. H. et al. J. geophys. Res. 92, 15–26 (1987).
    Article ADS Google Scholar
  12. Hodges, R. R. & Tinsley, B. A. J. geophys. Res. 91, 13649–13658 (1986).
    Article ADS Google Scholar
  13. Grinspoon, D. H. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789. (1992).
  14. Hunten, D. M., Donahue, T. M., Walker, J. C. G. & Kasting, J. F. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S., Pollack, J. B. & Matthews, M.S.) 386–422 (Univ. of Arizona Press, 1989).
    Google Scholar
  15. Lewis, J. S. & Grinspoon, D. H. Science 249, 1273–1275 (1990).
    Article ADS CAS Google Scholar
  16. Donahue, T. M. & Hodges, R.R. J. geophys. Res. 97, 6083–6091 (1992b).
    Article ADS CAS Google Scholar
  17. Krasnopolsky, V. A. Icarus 62, 221 (1985).
    Article ADS Google Scholar
  18. Head, J. W., Crumpler, L., Aubele, J., Guest, J. & Saunders, R. S. J. geophys Res. 97, 13153–13197 (1992).
    Article ADS Google Scholar
  19. Phillips, R. J. et al. J. geophys. Res. 97, 15923–15948 (1992).
    Article ADS Google Scholar
  20. Schaber, G. G. et al. J. geophys. Res. 97, 13257–13302 (1992).
    Article ADS Google Scholar
  21. Bullock, M. A., Grinspoon, D. H. & Head, J. W. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).
  22. Moore, J. G. Contrib. Mineral. Petrol. 28, 272 (1970).
    Article ADS CAS Google Scholar
  23. Head, J. W., Parmentier, E. M. & Hess, P. C. Papers presented to int. Colloq. Venus. LPI Contrib. No. 789 (1992).
  24. Turcotte, D. Papers presented to int. Colloq. Venus, LPI Contrib. No. 789 (1992).
  25. Pollack, J. B., Toon, O. B. & Boese, R. J. geophys. Res. 85, 8223–8231 (1980).
    Article ADS Google Scholar
  26. Kumar, S., Hunten, D. M. & Pollack, J. B. Icarus 55, 369–389 (1983).
    Article ADS CAS Google Scholar
  27. Kasting, J. F. & Pollack, J. B. Icarus 53, 479–508 (1983).
    Article ADS CAS Google Scholar
  28. de Bergh, C. et al. Science 251, 547–549 (1991).
    Article ADS CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, 80309, USA
    David Harry Grinspoon

Authors

  1. David Harry Grinspoon
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Grinspoon, D. Implications of the high D/H ratio for the sources of water in Venus' atmosphere.Nature 363, 428–431 (1993). https://doi.org/10.1038/363428a0

Download citation

This article is cited by