Complementation of dominant suppression implicates CD98 in integrin activation (original) (raw)

References

  1. Hynes, R. O. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69, 11–25 (1992).
    Article CAS Google Scholar
  2. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Biol. 11, 549–599 (1995).
    Article CAS Google Scholar
  3. Williams, M. J., Hughes, P. E., O'Toole, T. E. & Ginsberg, M. H. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 4, 109–112 (1994).
    Article CAS Google Scholar
  4. Mannion, B. A., Berditchevski, F., Eble, J. A. & Hemler, M. E. Functionally active β1integrins show specific association with CD98 protein.(submitted).
  5. Baker, E. K. et al. Agenetic analysis of integrin function: Glanzmann thrombasthenia in vitro. Proc. Natl Acad. Sci. USA 94, 1973–1978 (1997).
    Article ADS CAS Google Scholar
  6. O'Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059 (1994).
    Article CAS Google Scholar
  7. Chen, Y. et al. “Inside-Out” signal transduction inhibited by isolated integrin cytoplasmic domains. J. Biol. Chem. 269, 18307–18310 (1994).
    CAS Google Scholar
  8. LaFlamme, S. E., Thomas, L. A., Yamada, S. S. & Yamada, K. M. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J. Cell Biol. 126, 1287–1298 (1994).
    Article CAS Google Scholar
  9. Hofmann, K. & Stoffel, W. F. Adatabase of membrane spanning protein segments. Hoppe-Seylers Z. Biol. Chem. 347, 166–180 (1993).
    Google Scholar
  10. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  11. Quackenbush, E. et al. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth. Proc. Natl Acad. Sci. USA 84, 6526–6530 (1987).
    Article ADS CAS Google Scholar
  12. Haynes, B. F. et al. Characterization of a monoclonal antibody (4F2) that binds to human monocytes and to a subset of activated lymphocytes. J. Immunol. 126, 1409–1414 (1981).
    CAS Google Scholar
  13. Berditchevski, F., Zutter, M. M. & Hemler, M. E. Characterization of novel complexes on the cell surface between integrins and proteins with 4 transmembrane domains (TM4 proteins). Mol. Biol. Cell 7, 193–207 (1996).
    Article CAS Google Scholar
  14. Lindberg, F. P., Gresham, H. D., Schwarz, E. & Brown, E. J. Molecular cloning of integrin-associated rotein: an immunoglobulin family member with multiple membrane spanning domains implicated in αvβ3-dependent ligand binding. J. Cell Biol. 123, 485–496 (1993).
    Article CAS Google Scholar
  15. Wei, Y. et al. Regulation of integrin function by the urokinase receptor. Science 273, 1551–1555 (1996).
    Article ADS CAS Google Scholar
  16. Elices, M. J., Urry, L. A. & Hemler, M. E. Receptor functions for the integrin VLA-3: Fibronectin, collagen and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations. J. Cell Biol. 112, 169–181 (1991).
    Article CAS Google Scholar
  17. Brown, E., Hooper, L., Ho, T. & Gresham, H. Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J. Cell Biol. 111, 2785–2794 (1990).
    Article CAS Google Scholar
  18. Ohgimoto, S. et al. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J. Immunol. 155, 3585–3592 (1995).
    CAS Google Scholar
  19. Ohta, H. et al. Molecular and biological characterization of fusion regulatory proteins (FRPs): anti-FRP mAbs induced HIV-mediated cell fusion via an integrin system. EMBO J. 13, 2044–2055 (1994).
    Article CAS Google Scholar
  20. Shimizu, Y., Van Seventer, G. A., Horgan, K. J. & Shaw, S. Regulated expression and binding of three VLA (β1) integrin receptors on T cells. Nature 345, 250–253 (1990).
    Article ADS CAS Google Scholar
  21. Lukashev, M. E., Sheppard, D. & Pytela, R. Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed β1integrin cytoplasmic domain. J. Biol. Chem. 269, 18311–18314 (1994).
    CAS Google Scholar
  22. Indig, F. E., Diaz-Gonzalez, F. & Ginsberg, M. H. Analysis of the tetraspanin CD9-integrin αIIbβ3(GPIIb-IIIa) complex in platelet membranes and transfected cells. Biochem. J. 326(in the press).
  23. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).
    Article CAS Google Scholar
  24. Hirawasawa, M., Shijubo, N., Uede, T. Y. & Abe, S. Integrin expression and ability to adhere to extracellular matrix proteins and endothelial cells in human lung cancer lines. Br. J. Cancer 70, 466–473 (1994).
    Article Google Scholar
  25. Hughes, P. et al. Suppression of integrin activation: A novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88, 521–530 (1997).
    Article CAS Google Scholar

Download references