Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization (original) (raw)

Nature volume 364, pages 523–525 (1993)Cite this article

Abstract

THE orientation of migratory birds is based on a complex of interacting compass mechanisms (the geomagnetic field, stars, patterns of skylight polarization and, perhaps, the Sun)1,2. A magnetic compass develops in birds that have never seen the sky3–8, but the preferred direction of magnetic orientation may be modified during the first three months of life by exposing naive birds to either the clear daytime or night sky under conditions in which magnetic directions differ substantially from true or geographic directions5–7,9. We hypothesized that celestial rotation, which indicates geographic directions both day and night, served as the calibrating reference7, and showed that a rotating pattern of artificial stars provided a sufficient stimulus to calibrate magnetic orientation in young Savannah sparrows (Passerculus sandwichensis)10. During daytime either the Sun's disc or patterns of polarized skylight could provide the reference to geographic compass directions11,12. Here we report that visual access to natural skylight polarization patterns is necessary for calibration of magnetic orientation during daylight.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Wiltschko, W. & Wiltschko, R. in Orientation in Birds (ed. Berthold, P.) 16–37 (Birkhauser, Basel, 1991).
    Book Google Scholar
  2. Able, K. P. Prog. Neurobiol. (in the press).
  3. Able, K. P. in Orientation in Birds (ed. Berthold, P.) 166–179 (Birkhauser, Basel, 1991).
    Book Google Scholar
  4. Wiltschko, W. & Gwinner, E. Naturwissenschaften 61, 406 (1974).
    Article ADS CAS Google Scholar
  5. Bingman, V. P. Behaviour 87, 43–53 (1983).
    Article Google Scholar
  6. Bingman, V. P., Beck, W. & Wiltschko, W. in Migration: Mechanisms and Adaptive Significance (ed. Rankin, M. A.) 544–552 (Marine Sci. Inst., Univ. Texas, Port Aransas, 1985).
    Google Scholar
  7. Able, K. P. & Able, M. A. Anim. Behav. 39, 905–913 (1990).
    Article Google Scholar
  8. Able, K. P. & Able, M. A. Ethology 93, 337–343 (1993).
    Article Google Scholar
  9. Prinz, K. & Wiltschko, W. Anim. Behav. 44, 539–545 (1992).
    Article Google Scholar
  10. Able, K. P. & Able, M. A. Nature 347, 378–380 (1990).
    Article ADS Google Scholar
  11. Brines, M. L. J. theor. Biol. 86, 507–512 (1980).
    Article CAS Google Scholar
  12. Phillips, J. B. & Waldvogel, J. A. in Avian Navigation (eds Papi, F. & Wallraff, H. G.) 190–202 (Springer, Berlin, 1982).
    Book Google Scholar
  13. Bingman, V. P. Anim. Behav. 29, 962–963 (1981).
    Article Google Scholar
  14. Moore, F. R. Anim. Behav. 28, 684–704 (1980).
    Article Google Scholar
  15. Moore, F. R. Anim. Behav. 33, 657–663 (1985).
    Article Google Scholar
  16. Able, K. P. & Able, M. A. Anim. Behav. 39, 1189–1198 (1990).
    Article Google Scholar
  17. Emlen, S. T. & Emlen, J. T. Auk 83, 361–367 (1966).
    Article Google Scholar
  18. Kirschvink, J. L. Bioelectromagnetics 13, 401–411 (1992).
    Article CAS Google Scholar
  19. Moore, F. R. & Phillips, J. B. Anim. Behav. 36, 1770–1778 (1988).
    Article Google Scholar
  20. Batscheiet, E. Circular Statistics in Biology (Academic, New York, 1981).
    Google Scholar
  21. Moore, F. R. Biol. Rev. 62, 65–86 (1987).
    Article Google Scholar
  22. Helbig, A. J. Trends Ecol. Evol. 5, 365–367 (1990).
    Article CAS Google Scholar
  23. Kreithen, M. L. & Keeton, W. T. J. comp. Physiol. 89, 83–92 (1974).
    Article Google Scholar
  24. Delius, J. D., Perchard, R. J. & Emmerton, J. J. comp. physiol. Psychol. 90, 560–571 (1976).
    Article CAS Google Scholar
  25. Coemans, M. A. J. M., Vos, J. J. & Nuboer, J. F. W. Naturwissenschaften 77, 138–142 (1990).
    Article ADS CAS Google Scholar
  26. Able, K. P. Nature 299, 550–551 (1982).
    Article ADS Google Scholar
  27. Moore, F. R. Condor 88, 483–498 (1986).
    Article ADS Google Scholar
  28. Able K. P. J. exp. Biol. 141, 241–256 (1989).
    Google Scholar
  29. Helbig, A. J. & Wiltschko, W. Naturwissenschaften 76, 227–229 (1989).
    Article ADS Google Scholar
  30. Helbig, A. J. Anim. Behav. 41, 313–322 (1991).
    Article Google Scholar
  31. Helbig, A. J. Experientia 46, 755–758.
  32. Able, K. P. in Animal Migration, Orientation, and Navigation (ed. Gauthreaux, S. A. Jr) 283–373 (Academic, New York, 1980).
    Book Google Scholar
  33. Schmidt-Koenig, K., Ganzhorn, J. U. & Ranvaud, R. in Orientation in Birds (ed. Berthold, P.) 1–15 (Birkhauser, Basel, 1991).
    Book Google Scholar
  34. Merritt, R., Purcell, C. & Stroink, G. Rev. Sci. Inst. 54, 879–882 (1983).
    Article ADS Google Scholar
  35. Cherry, J. D. & Able, K. P. Auk 103, 225–227 (1986).
    Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Biological Sciences, State University of New York at Albany, Albany, New York, 12222, USA
    Kenneth P. Able & Mary A. Able

Authors

  1. Kenneth P. Able
    You can also search for this author inPubMed Google Scholar
  2. Mary A. Able
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Able, K., Able, M. Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization.Nature 364, 523–525 (1993). https://doi.org/10.1038/364523a0

Download citation

This article is cited by