Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals (original) (raw)

Nature volume 365, pages 163–166 (1993)Cite this article

Abstract

DYNAMIN is a microtubule-binding protein with a microtubule-activated GTPase activity1,3. The gene encoding dynamin is mut-ated in _shibire_4,5, a Drosophila mutant defective in endocytosis in nerve terminals and other cells6–9. These observations place dyna-min into two distinct functional contexts, suggesting roles in microtubule-based motility or in endocytosis. We report here that dynamin is identical to the neuronal phosphoprotein dephosphin (P96), originally identified by its stimulus-dependent dephosphorylation in nerve terminals10–13. Dynamin is a protein doublet of Mr 94 and 96K arising by alternative splicing of its primary transcript. In the nerve terminal, both forms of dynamin are phosphorylated by protein kinase C (PKC) and are quantitatively dephosphoryla-ted on excitation. In vitro, dynamin is also phosphorylated by casein kinase II which inhibits PKC phosphorylation. Phosphory-lation by PKC but not by casein kinase II enhances the GTPase activity of dynamin 12-fold. The dynamins are therefore a group of nerve terminal phosphoproteins whose GTPase is regulated by phosphorylation in parallel with synaptic vesicle recycling. The regulation of dynamin GTPase could serve as the trigger for the rapid endocytosis of synaptic vesicles after exocytosis.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Obar, R. A., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).
    Article ADS CAS Google Scholar
  2. Shpetner, H. S. & Vallee, R. B. Nature 355, 733–735 (1992).
    Article ADS CAS Google Scholar
  3. Maeda, K., Nakata, T., Noda, Y., Sato-Yoshitake, R. & Hirokawa, N. Molec. Biol. Cell 3, 1181–1194 (1992).
    Article CAS Google Scholar
  4. van der Bliek, A. M. & Meyerowitz, E. M. Nature 351, 411–414 (1991).
    Article ADS CAS Google Scholar
  5. Chen, M. S. et al. Nature 351, 583–586 (1991).
    Article ADS CAS Google Scholar
  6. Kosaka, T. & Ikeda, K. J. Neurobiol. 14, 207–225 (1983).
    Article CAS Google Scholar
  7. Kosaka, T. & Ikeda, K. J. Cell Biol. 97, 499–507 (1983).
    Article CAS Google Scholar
  8. Kessell, I., Holst, G. D. & Roth, T. F. Proc. natn. Acad. Sci. U.S.A. 86, 4968–4972 (1989).
    Article ADS CAS Google Scholar
  9. Koenig, J. H. & Ikeda, K. J. Neurosc. 9, 3844–3860 (1989).
    Article CAS Google Scholar
  10. Robinson, P. J. FEBS Lett. 282, 388–392 (1991).
    Article CAS Google Scholar
  11. Robinson, P. J., Hauptschein, R., Lovenberg, W. & Dunkley, P. R. J. Neurochem. 48, 187–195 (1987).
    Article CAS Google Scholar
  12. Sihra, T. S., Bogonez, E. & Nicholls, D. G. J. biol. Chem. 267, 1983–1989 (1992).
    CAS PubMed Google Scholar
  13. Robinson, P. J. J. biol. Chem. 267, 21637–21644 (1992).
    CAS PubMed Google Scholar
  14. Faire, K., Trent, F., Tepper, J. M. & Bonder, E. M. Proc. natn. Acad. Sci. U.S.A. 89, 8376–8380 (1992).
    Article ADS CAS Google Scholar
  15. Matsudaira, P. J. biol. Chem. 262, 10035–10038 (1987).
    CAS PubMed Google Scholar
  16. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1988).
    Google Scholar
  17. Südhof, T. C. et al. Science 245, 1474–1480 (1989).
    Article ADS Google Scholar
  18. Johnston, P. A., Jahn, R. & Südhof, T. C. J. biol. Chem. 264, 1268–1273 (1989).
    CAS PubMed Google Scholar
  19. Lincoln, T. M. Meth. Enzym. 99, 62–71 (1983).
    Article CAS Google Scholar
  20. Reimann, F. M. & Beham, R. A. Meth. Enzym. 99, 51–55 (1983).
    Article CAS Google Scholar
  21. Pascal, B. M., Shpetner, H. S. & Vallee, R. B. Meth. Enzym. 196, 181–191 (1991).
    Article Google Scholar

Download references

Author information

Authors and Affiliations

  1. Endocrine Unit, John Hunter Hospital, Locked Bag 1, Hunter Region Mail Centre, Newcastle, New South Wales, 2310, Australia
    Phillip J. Robinson & Jun-Ping Liu
  2. Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75235, USA
    Jean-Marie Sontag, Else Marie Fykse, Clive Slaughter, Harvey McMahontt & Thomas C. Südhof
  3. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75235, USA
    Jean-Marie Sontag, Else Marie Fykse, Harvey McMahontt & Thomas C. Südhof

Authors

  1. Phillip J. Robinson
    You can also search for this author inPubMed Google Scholar
  2. Jean-Marie Sontag
    You can also search for this author inPubMed Google Scholar
  3. Jun-Ping Liu
    You can also search for this author inPubMed Google Scholar
  4. Else Marie Fykse
    You can also search for this author inPubMed Google Scholar
  5. Clive Slaughter
    You can also search for this author inPubMed Google Scholar
  6. Harvey McMahontt
    You can also search for this author inPubMed Google Scholar
  7. Thomas C. Südhof
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Robinson, P., Sontag, JM., Liu, JP. et al. Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals.Nature 365, 163–166 (1993). https://doi.org/10.1038/365163a0

Download citation

This article is cited by