Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels (original) (raw)

Nature volume 366, pages 158–161 (1993)Cite this article

Abstract

VOLTAGE-GATED Ca2+ channels link changes in membrane potential to the delivery of Ca2+, a key second messenger for many cellular responses1. Ca2+ channels show selectivity for Ca2+ over more plentiful ions such as Na+ or K+ by virtue of their high-affinity binding of Ca2+ within the pore2& ndash;6. It has been suggested that this binding involves four conserved glutamate residues7& ndash;10 in equivalent positions in the putative pore-lining regions of repeats I& ndash;IV in the Ca2+ channel & alpha;1 subunit. We have carried out a systematic series of single amino-acid substitutions in each of these positions and find that all four glutamates participate in high-affinity binding of Ca2+ or Cdd2+. Each glutamate carboxylate makes a distinct contribution to ion binding, with the carboxylate in repeat III having the strongest effect. Some single glutamate-to-lysine mutations completely abolish micromolar Ca2+ block, indicating that the pore does not possess any high-affinity binding site that acts independently of the four glutamate residues. The prevailing model of Ca2+permeation2,3 must thus be modified to allow binding of two Ca2+ ions in close proximity11,12, within the sphere of influence of the four glutamates. The functional inequality of the glutamates may be advantageous in allowing simultaneous interactions with multiple Ca2+ ions moving single-file within the pore. Competition among Ca2+ ions for individual glutamates11,12, together with repulsive ion-ion electrostatic interaction2,3, may help achieve rapid flux rates through the channel2& ndash;5.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sutherland, Massachusetts, 1992).
    Google Scholar
  2. Almers, W. & McCleskey, E. W. J. Physiol., Lond. 353, 585–608 (1984).
    Article CAS Google Scholar
  3. Hess, P. & Tsien, R. W. Nature 309, 453–456 (1984).
    Article ADS CAS Google Scholar
  4. Hess, P., Lansman, J. B. & Tsien, R. W. J. gen. Physiol. 88, 293–319 (1986).
    Article CAS Google Scholar
  5. Lansman, J. B., Hess, P. & Tsien, R. W. J. gen. Physiol. 88, 321–347 (1986).
    Article CAS Google Scholar
  6. Rosenberg, R. L. & Chen, X.-H. J. gen. Physiol. 97, 1207–1225 (1991).
    Article CAS Google Scholar
  7. Miller, C. Curr. Biol. 2, 573–575 (1992).
    Article CAS Google Scholar
  8. Tomaselli, G. F., Backx, P. H. & Marban, E. Circulation Res. 72, 491–496 (1993).
    Article CAS Google Scholar
  9. Heinemann, S. H., Terlau, H., Stühmer, W., Imoto, K. & Numa, S. Nature 356, 441–443 (1992).
    Article ADS CAS Google Scholar
  10. Kim, M.-K., Morii, T., Sun, L.-X., Imoto, K. & Mori, Y. FEBS Lett. 318, 145–148 (1993).
    Article CAS Google Scholar
  11. Kuo, C.-C. & Hess, P. J. Physiol., Lond. 466, 629–655 (1993).
    CAS PubMed Google Scholar
  12. Armstrong, C. M. & Neyton, J. Ann. N.Y. Acad. Sci. 635, 18–25 (1992).
    Article ADS Google Scholar
  13. Mikami, A. et al. Nature 340, 230–233 (1989).
    Article ADS CAS Google Scholar
  14. Kostyuk, P. G., Mironov, S. L. & Shuba, Y. J. Membrane Biol. 76, 83–93 (1983).
    Article Google Scholar
  15. Fukushima, Y. & Hagiwara, S. J. Physiol., Lond. 358, 255–284 (1985).
    Article CAS Google Scholar
  16. Heginbotham, L. & MacKinnon, R. Neuron 8, 483–491 (1992).
    Article CAS Google Scholar
  17. Chow, R. H. J. gen. Physiol. 98, 483–491 (1992).
    Google Scholar
  18. Fraústo da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Clarendon, Oxford, 1991).
    Google Scholar
  19. Zheng, W., Rampe, D. & Triggle, D. J. Molec. Pharmacol. 40, 734–741 (1991).
    CAS Google Scholar
  20. Tang, S. et al. J. biol. Chem. 268, 13026–13029 (1993).
    CAS PubMed Google Scholar
  21. Yool, A. J. & Schwarz, T. L. Nature 349, 700–704 (1991).
    Article ADS CAS Google Scholar
  22. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Science 251, 939–942 (1991).
    Article ADS CAS Google Scholar
  23. Hartmann, H. A. et al. Science 251, 942–944 (1991).
    Article ADS CAS Google Scholar
  24. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Nature 339, 476–478 (1989).
    Article ADS CAS Google Scholar
  25. Kretsinger, R. H. Crit. Rev. Biochem. 8, 119–174 (1980).
    Article CAS Google Scholar
  26. Revah, F. et al. Nature 353, 846–849 (1991).
    Article ADS CAS Google Scholar
  27. Ellis, S. B. et al. Science 241, 1661–1664 (1988).
    Article ADS CAS Google Scholar
  28. Hullin, R. et al. EMBO. J. 11, 885–890 (1992).
    Article CAS Google Scholar
  29. Sather, et al. Neuron 11, 291–303 (1993).
    Article CAS Google Scholar
  30. Meyer, T., Wensel, T. & Stryer, L. Biochemistry 29, 32–37 (1990).
    Article CAS Google Scholar

Download references

Author information

Authors and Affiliations

  1. Department of Molecular and Cellular Physiology, Beckman Center, Stanford University Medical Center, Stanford, California, 94305, USA
    Jian Yang, Patrick T. Elllnor, William A. Sather, JI-Fang Zhang & Richard W. Tsien

Authors

  1. Jian Yang
    You can also search for this author inPubMed Google Scholar
  2. Patrick T. Elllnor
    You can also search for this author inPubMed Google Scholar
  3. William A. Sather
    You can also search for this author inPubMed Google Scholar
  4. JI-Fang Zhang
    You can also search for this author inPubMed Google Scholar
  5. Richard W. Tsien
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Yang, J., Elllnor, P., Sather, W. et al. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels.Nature 366, 158–161 (1993). https://doi.org/10.1038/366158a0

Download citation

This article is cited by