Astrocyte-mediated potentiation of inhibitory synaptic transmission (original) (raw)

References

  1. Bliss, T. V. P. & Gardner-Medwin, A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 357–374 ( 1973).
    Article CAS Google Scholar
  2. Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).
    Article CAS Google Scholar
  3. Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).
    Article CAS Google Scholar
  4. Korn, H., Oda, Y. & Faber, D. S. Long-term potentiation of inhibitory circuits and synapses in the central nervous system. Proc. Natl. Acad. Sci. USA 89, 440–443 (1992).
    Article CAS Google Scholar
  5. Kano, M., Rexhausen, U., Dreessen, J. & Konnerth, A. A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604 (1992).
    Article CAS Google Scholar
  6. Komatsu, Y. Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J. Neurosci. 14, 6488 –6499 (1994).
    Article CAS Google Scholar
  7. Xie, Z., Yip, S., Morishita, W. & Sastry, B. R. Tetanus-induced potentiation of inhibitory postsynaptic potentials in hippocampal CA1 neurons. Can. J. Physiol. Pharmacol. 73, 1706– 1713 (1995).
    Article CAS Google Scholar
  8. Wong, R. K. S. & Watkins, D. J. Cellular factors influencing GABA response in hippocampal pyramidal cells. J. Neurophysiol. 48, 938–951 ( 1982).
    Article CAS Google Scholar
  9. Thompson, S. M. & Gähwiler, B. H. Activity-dependent disinhibition I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J. Neurophysiol. 61, 501–511 (1989).
    Article CAS Google Scholar
  10. McCarren, M. & Alger, B. E. Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J. Neurophysiol. 53, 557–571 (1985).
    Article CAS Google Scholar
  11. Cox, C. L., Huguenard, J. R. & Prince, D. A. Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc. Natl. Acad. Sci. USA 94, 8854–8859 (1997).
    Article CAS Google Scholar
  12. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
    Article CAS Google Scholar
  13. Pouzat, C. & Hestrin, S. Developmental regulation of basket/stellate cell→Purkinje cell synapses in the cerebellum. J. Neurosci. 17, 9104–9112 ( 1997).
    Article CAS Google Scholar
  14. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 (1990).
    Article CAS Google Scholar
  15. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429– 440 (1992).
    Article CAS Google Scholar
  16. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081, 1996.
    Article CAS Google Scholar
  17. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768– 1771 (1994).
    Article CAS Google Scholar
  18. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signaling. Nature 369, 744–747 ( 1994).
    Article CAS Google Scholar
  19. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).
    Article CAS Google Scholar
  20. Araque, A., Parpura, V., Sanzgiri, R. P. & Hayton, P. G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142 (1998).
    Article CAS Google Scholar
  21. Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028 (1998).
    Article CAS Google Scholar
  22. Cotrina, M. L. et al. Astrocytic gap junctions remain open during ischemic conditions. J. Neurosci. 18, 2520– 2537 (1998).
    Article CAS Google Scholar
  23. Thompson, S. M., Masukawa, L. M. & Prince, D. A. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J. Neurosci. 5, 817–824 ( 1985).
    Article CAS Google Scholar
  24. Miles, R. Tetanic stimuli induce a short-term enhancement of recurrent inhibition in the CA3 region of guinea-pig hippocampus in vitro. J. Physiol. (Lond.) 443, 669–682 ( 1991).
    Article CAS Google Scholar
  25. Fleidervish, I. A. & Gutnick, M. J. Paired-pulse facilitation of IPSCs in slices of immature and mature mouse somatosensory neocortex. J. Neurophysiol. 73, 2591– 2595 (1995).
    Article CAS Google Scholar
  26. Jeftinija, S. D., Jeftinija, K. V., Stefanovic, G. & Liu, F. Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J. Neurochem. 66, 676 –684 (1996).
    Article CAS Google Scholar
  27. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281– 285 (1998).
    Article CAS Google Scholar
  28. Nilsson, M., Eriksson, P. S., Rönnbäck, L. & Hansson, E. GABA induces Ca2+ transients in astrocytes. Neuroscience 54, 605–614 ( 1993).
    Article CAS Google Scholar
  29. Davies, C. H. & Collingridge, G. L. The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus. J. Physiol. (Lond.) 472, 245– 265 (1993).
    Article CAS Google Scholar
  30. Miles, R., Tóth, K., Gulyás, A. I., Hájos, N. & Freund, T. F. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16, 815–823 ( 1996).
    Article CAS Google Scholar
  31. Frerking, M., Borges, S. & Wilson, M. Variation in GABA mini amplitude is the consequence of variation in transmitter concentration. Neuron 15 , 885–895 (1995).
    Article CAS Google Scholar
  32. Korn, S. J., Giacchino, J. L., Chamberlin, N. L. & Dingledine, R. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57, 325–341 (1987).
    Article CAS Google Scholar
  33. Kang, J., Huguenard, J. R. & Prince, D. A. Postnatal development of BK channels in rat neocortical pyramidal neurons. J. Neurophysiol. 76, 188–198 (1996).
    Article CAS Google Scholar
  34. Hamill, O. P., Marty, A., Neher, E., Sackmann, B. & Sigworth, B. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 ( 1981).
    Article CAS Google Scholar
  35. Lin, J. C. et al. Gap-junction-mediated propagation and amplification of cell injury. Nature Neurosci. 1, 494– 500 (1998).
    Article CAS Google Scholar

Download references