Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase (original) (raw)

Nature volume 369, pages 235–239 (1994)Cite this article

Abstract

PROTEIN kinases modulate the activity of several ligand-gated ion channels1, including the NMDA (_N_-methyl-D-aspartate)2 subtype of glutamate receptor. Although phosphorylation and dephosphorylation of glutamate receptors may participate in several lasting physiological and pathological alterations of neuronal excitability3–7, the physiological control of this cycle for NMDA channels has not yet been established. Using cell-attached recordings in acutely dissociated adult rat dentate gyrus granule cells, we now demonstrate that inhibitors of an endogenous serine/threonine phosphatase prolong the duration of single NMDA channel openings, bursts, clusters and superclusters. Okadaic acid, a non-selective phosphatase inhibitor, prolongs channel openings only at a concentration that inhibits the Ca2+/calmodulin-dependent phosphatase 2B (calcineurin)8, and is ineffective when Ca2+ entry through NMDA channels is prevented. Furthermore, FK506, an inhibitor of calcineurin9,10, mimics the effects of okadaic acid. Thus in adult neurons, calcineurin, activated by calcium entry through native NMDA channels, shortens the duration of channel openings. Simulated synaptic currents11 were enhanced after phosphatase inhibition, which is consistent with the importance of phosphorylation of the NMDA-receptor complex in the short- and long-term control of neuronal excitability.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 51 print issues and online access

$199.00 per year

only $3.90 per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

Similar content being viewed by others

References

  1. Raymond, L. A., Blackstone, C. D. & Huganir, R. L. Trends Neurosci. 16, 147–153 (1993).
    Article CAS Google Scholar
  2. Chen, L. & Huang, L.-Y. M. Nature 356, 521–523 (1992).
    Article ADS CAS Google Scholar
  3. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).
    Article ADS CAS Google Scholar
  4. Köhr, G., De Koninck, Y. & Mody, I. J. Neurosci. 13, 3612–3627 (1993).
    Article Google Scholar
  5. Figurov, A., Boddeke, H. & Muller, D. Eur. J. Neurosci. 5, 1035–1041 (1993).
    Article CAS Google Scholar
  6. Mulkey, R. M., Herron, C. E. & Malenka, R. C. Science 261, 1051–1055 (1993).
    Article ADS CAS Google Scholar
  7. Tingley, W. G., Roche, K. W., Thompson, A. K. & Huganir, R. L. Nature 364, 70–73 (1993).
    Article ADS CAS Google Scholar
  8. Bialojan, C. & Takai, A. J. Biochem. 256, 283–290 (1988).
    Article CAS Google Scholar
  9. Liu, J. et al. Cell 66, 807–815 (1991).
    Article CAS Google Scholar
  10. Clipstone, N. A. & Crabtree, G. R. Nature 357, 695–697 (1992).
    Article ADS CAS Google Scholar
  11. Edmonds, B. & Colquhoun, D. Proc. R. Soc. 250, 279–286 (1992).
    Article ADS CAS Google Scholar
  12. MacDonald, J. F., Mody, I. & Salter, M. W. J. Physiol., Lond. 414, 17–34 (1989).
    Article CAS Google Scholar
  13. Gibb, A. J. & Colquhoun, D. J. Physiol., Lond. 456, 143–179 (1992).
    Article CAS Google Scholar
  14. Haystead, T. A. J. et al. Nature 337, 78–81 (1989).
    Article ADS CAS Google Scholar
  15. Abdul-Ghani, M., Kravitz, E. A., Meiri, H. & Rahamimoff, R. Proc. natn. Acad. Sci. U.S.A. 88, 1803–1807 (1991).
    Article ADS CAS Google Scholar
  16. Sah, P., Hestrin, S. & Nicoll, R. A. Science 246, 815–818 (1989).
    Article ADS CAS Google Scholar
  17. Mayer, M. L. & Westbrook, G. L. J Physiol., Lond. 394, 501–527 (1987).
    Article CAS Google Scholar
  18. Schneggenburger, R., Zhou, Z., Konnerth, A. & Neher, E. Neuron 11, 133–143 (1993).
    Article CAS Google Scholar
  19. Legendre, P., Rosenmund, C. & Westbrook, G. L. J. Neurosci. 13, 674–684 (1993).
    Article CAS Google Scholar
  20. Rosenmund, C. & Wesbrook, C. L. Neuron 10, 805–614 (1993).
    Article CAS Google Scholar
  21. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. Nature 307, 462–465 (1984).
    Article ADS CAS Google Scholar
  22. Klee, C. B., Draetta, G. F. & Hubbard, M. J. Adv. Enzym. 61, 149–200 (1988).
    CAS Google Scholar
  23. Steiner, J. P. et al. Nature 358, 584–587 (1992).
    Article ADS CAS Google Scholar
  24. Halpain, S. & Greengard, P. Neuron 5, 237–246 (1990).
    Article CAS Google Scholar
  25. Goto, S. et al. J. Neurochem. 45, 276–283 (1985).
    Article CAS Google Scholar
  26. Polli, J. W., Billingsley, M. L. & Kincaid, R. L. Devl Brain Res. 63, 105–119 (1991).
    Article CAS Google Scholar
  27. Watanabe, M., Inoue, Y., Sakimura, K. & Mishina, M. Neuroreport 3, 1138–1140 (1992).
    Article CAS Google Scholar
  28. Morioka, M. et al. J. Neurochem. 58, 1798–1809 (1992).
    Article CAS Google Scholar
  29. Crepel, V., Hammond, C., Krnjevic, K., Chinestra, P. & Ben-Ari, Y. J. Neurophys. 69, 1774–1778 (1993).
    Article CAS Google Scholar
  30. Lester, R. A. J. & Jahr, C. E. J. Neurosci. 12, 635–643 (1992).
    Article CAS Google Scholar

Download references

Author information

Author notes

  1. Istvan Mody: To whom correspondence should be addressed.

Authors and Affiliations

  1. Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, California, 94305, USA
    David N. Lieberman
  2. Department of Anesthesiology and Pain Management, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75235-9068, USA
    Istvan Mody

Authors

  1. David N. Lieberman
    You can also search for this author inPubMed Google Scholar
  2. Istvan Mody
    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Lieberman, D., Mody, I. Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase.Nature 369, 235–239 (1994). https://doi.org/10.1038/369235a0

Download citation

This article is cited by